Suppr超能文献

通过机器学习模型研究抗生素对环境微生物群的影响。

Investigating the Impact of Antibiotics on Environmental Microbiota Through Machine Learning Models.

作者信息

Du Yiheng, Ahmed Khandaker Asif, Hasan Md Rakibul, Hossain Md Zakir

机构信息

Australian National University, Canberra, Australia.

CSIRO Australian Centre for Disease Prepardness, Geelong, Australia.

出版信息

IET Syst Biol. 2025 Jan-Dec;19(1):e70009. doi: 10.1049/syb2.70009.

Abstract

Antibiotic pollution in the environment can significantly impact soil microorganisms, such as altering the soil microbial community or emerging antibiotic-resistant bacteria. We propose three machine learning (ML) methods to investigate antibiotics' impact on microorganisms and predict microbial abundance. We examined the microbial abundances of various environmental soil samples treated with antibiotics. We developed 3 ML models: (Model 1) for predicting the most abundant bacterial classes in a specific treatment group; (Model 2) for predicting antibiotic treatment effects based on bacterial abundances; and (Model 3) for using data from short-term incubations to predict the data of community structure after stabilisation. In Model 1, the Random Forest model achieved the highest average accuracy, with a Coefficient of Variation mean of 0.05 and 0.14 in the training and test set. In Model 2, the accuracy of the random forest and SVM models have the highest accuracy (nearly 0.90). Model 3 demonstrates that the Random Forest can use data from short-term incubations to predict the abundance of bacterial communities after long-term stabilisation. This study highlights the potential of ML models as powerful tools for understanding microbial dynamics in response to antibiotic treatments. The code is publicly available at - https://github.com/DeweyYihengDu/ML_on_Microbiota.

摘要

环境中的抗生素污染会对土壤微生物产生重大影响,比如改变土壤微生物群落或产生抗生素抗性细菌。我们提出了三种机器学习(ML)方法来研究抗生素对微生物的影响并预测微生物丰度。我们检测了用抗生素处理过的各种环境土壤样本中的微生物丰度。我们开发了3种ML模型:(模型1)用于预测特定处理组中最丰富的细菌类别;(模型2)用于根据细菌丰度预测抗生素处理效果;以及(模型3)用于利用短期培养的数据预测稳定后的群落结构数据。在模型1中,随机森林模型实现了最高的平均准确率,训练集和测试集的变异系数均值分别为0.05和0.14。在模型2中,随机森林和支持向量机模型的准确率最高(接近0.90)。模型3表明,随机森林可以利用短期培养的数据预测长期稳定后的细菌群落丰度。本研究突出了ML模型作为理解微生物对抗生素处理反应动态的有力工具的潜力。代码可在https://github.com/DeweyYihengDu/ML_on_Microbiota上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2da4/11949845/f6c90c7a9878/SYB2-19-e70009-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验