Suppr超能文献

基于机器学习算法的糖尿病肾病关键免疫相关基因及免疫浸润的鉴定。

Identification of key immune-related genes and immune infiltration in diabetic nephropathy based on machine learning algorithms.

机构信息

Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

IET Syst Biol. 2023 Jun;17(3):95-106. doi: 10.1049/syb2.12061. Epub 2023 Mar 14.

Abstract

BACKGROUND

Diabetic nephropathy (DN) is a complication of diabetes. This study aimed to identify potential diagnostic markers of DN and explore the significance of immune cell infiltration in this pathology.

METHODS

The GSE30528, GSE96804, and GSE1009 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified by merging the GSE30528 and GSE96804 datasets. Enrichment analyses of the DEGs were performed. A LASSO regression model, support vector machine recursive feature elimination analysis and random forest analysis methods were performed to identify candidate biomarkers. The CIBERSORT algorithm was utilised to compare immune infiltration between DN and normal controls.

RESULTS

In total, 115 DEGs were obtained. The enrichment analysis showed that the DEGs were prominent in immune and inflammatory responses. The DEGs were closely related to kidney disease, urinary system disease, kidney cancer etc. CXCR2, DUSP1, and LPL were recognised as diagnostic markers of DN. The immune cell infiltration analysis indicated that DN patients contained a higher ratio of memory B cells, gamma delta T cells, M1 macrophages, M2 macrophages etc. cells than normal people.

CONCLUSION

Immune cell infiltration is important for the occurrence of DN. CXCR2, DUSP1, and LPL may become novel diagnostic markers of DN.

摘要

背景

糖尿病肾病(DN)是糖尿病的一种并发症。本研究旨在寻找潜在的 DN 诊断标志物,并探讨免疫细胞浸润在这一病理中的意义。

方法

从基因表达综合数据库中下载 GSE30528、GSE96804 和 GSE1009 数据集。通过合并 GSE30528 和 GSE96804 数据集来识别差异表达基因(DEGs)。对 DEGs 进行富集分析。采用 LASSO 回归模型、支持向量机递归特征消除分析和随机森林分析方法识别候选生物标志物。利用 CIBERSORT 算法比较 DN 与正常对照之间的免疫浸润。

结果

共获得 115 个 DEGs。富集分析表明,DEGs 在免疫和炎症反应中较为显著。DEGs 与肾脏疾病、泌尿系统疾病、肾脏癌症等密切相关。CXCR2、DUSP1 和 LPL 被认为是 DN 的诊断标志物。免疫细胞浸润分析表明,DN 患者的记忆 B 细胞、γδT 细胞、M1 巨噬细胞、M2 巨噬细胞等细胞比例高于正常人。

结论

免疫细胞浸润对 DN 的发生具有重要意义。CXCR2、DUSP1 和 LPL 可能成为 DN 的新型诊断标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b497/10280611/9bf774d90f29/SYB2-17-95-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验