Landeros-Rivera Bruno, Contreras-García Julia, Martín Pendás Ángel
Departmento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma De México, 04510 Ciudad de México, México.
Laboratoire de Chimie Théorique, Sorbonne Universite and CNRS, 4 Pl. Jussieu, F. 75005 Paris, France.
IUCrJ. 2025 May 1;12(Pt 3):295-306. doi: 10.1107/S2052252525001721.
The use of electronic structure methods in crystallographic data analysis, the now well known field of quantum crystallography, aids in the solution of several problems in X-ray diffraction refinement, as well as opening new avenues to access a whole new set of experimentally available observables. A key ingredient in quantum crystallography is the theoretically derived electron density, ρ, obtained from standard electronic structure codes. Here, we introduce a factor that has not been carefully considered until now. As we demonstrate, theoretically derived ρ values depend not only on the set of computational conditions used to obtain them but also on the particular computational code selected for this task. We recommend that all quantum crystallographers carefully check the convergence of ρ before undertaking any serious study.
电子结构方法在晶体学数据分析中的应用,即如今广为人知的量子晶体学领域,有助于解决X射线衍射精修中的若干问题,同时也为获取一整套全新的实验可观测数据开辟了新途径。量子晶体学的一个关键要素是从标准电子结构代码中获得的理论推导电子密度ρ。在此,我们引入一个至今尚未得到仔细考虑的因素。正如我们所证明的,理论推导的ρ值不仅取决于用于获得它们的一组计算条件,还取决于为此任务选择的特定计算代码。我们建议所有量子晶体学家在进行任何深入研究之前仔细检查ρ的收敛性。