Malaspina Lorraine A, Genoni Alessandro, Jayatilaka Dylan, Turner Michael J, Sugimoto Kunihisa, Nishibori Eiji, Grabowsky Simon
Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland.
Universität Bremen, Fachbereich 2 - Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany.
J Appl Crystallogr. 2021 Apr 16;54(Pt 3):718-729. doi: 10.1107/S1600576721001126. eCollection 2021 Jun 1.
Although hydrogen bonding is one of the most important motifs in chemistry and biology, H-atom parameters are especially problematic to refine against X-ray diffraction data. New developments in quantum crystallography offer a remedy. This article reports how hydrogen bonds are treated in three different quantum-crystallographic methods: Hirshfeld atom refinement (HAR), HAR coupled to extremely localized molecular orbitals and X-ray wavefunction refinement. Three different compound classes that form strong intra- or intermolecular hydrogen bonds are used as test cases: hydrogen maleates, the tripeptide l-alanyl-glycyl-l-alanine co-crystallized with water, and xylitol. The differences in the quantum-mechanical electron densities underlying all the used methods are analysed, as well as how these differences impact on the refinement results.
尽管氢键是化学和生物学中最重要的基序之一,但H原子参数在根据X射线衍射数据进行精修时特别成问题。量子晶体学的新进展提供了一种补救方法。本文报道了在三种不同的量子晶体学方法中如何处理氢键: Hirshfeld原子精修(HAR)、与极局域分子轨道耦合的HAR以及X射线波函数精修。形成强分子内或分子间氢键的三种不同化合物类别用作测试案例:马来酸氢盐、与水共结晶的三肽l-丙氨酰-l-甘氨酰-l-丙氨酸以及木糖醇。分析了所有使用方法背后量子力学电子密度的差异,以及这些差异如何影响精修结果。