Zhu Fangqiang, Rajan Saravanan, Hayes Conor F, Kwong Ka Yin, Goncalves Andre R, Zemla Adam T, Lau Edmond Y, Zhang Yi, Cai Yingyun, Goforth John W, Landajuela Mikel, Gilchuk Pavlo, Kierny Michael, Dippel Andrew, Amofah Bismark, Kaplan Gilad, Cadevilla Peano Vanessa, Morehouse Christopher, Sparklin Ben, Gopalakrishnan Vancheswaran, Tuffy Kevin M, Nguyen Amy, Beloor Jagadish, Kijak Gustavo, Liu Chang, Dijokaite-Guraliuc Aiste, Mongkolsapaya Juthathip, Screaton Gavin R, Petersen Brenden K, Desautels Thomas A, Bennett Drew, Conti Simone, Segelke Brent W, Arrildt Kathryn T, Kaul Samantha, Grzesiak Emilia A, da Silva Felipe Leno, Bates Thomas W, Earnhart Christopher G, Hopkins Svetlana, Sundaram Shivshankar, Esser Mark T, Francica Joseph R, Faissol Daniel M
Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
Sci Adv. 2025 Mar 28;11(13):eadu0718. doi: 10.1126/sciadv.adu0718.
Most previously authorized clinical antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have lost neutralizing activity to recent variants due to rapid viral evolution. To mitigate such escape, we preemptively enhance AZD3152, an antibody authorized for prophylaxis in immunocompromised individuals. Using deep mutational scanning (DMS) on the SARS-CoV-2 antigen, we identify AZD3152 vulnerabilities at antigen positions F456 and D420. Through two iterations of computational antibody design that integrates structure-based modeling, machine-learning, and experimental validation, we co-optimize AZD3152 against 24 contemporary and previous SARS-CoV-2 variants, as well as 20 potential future escape variants. Our top candidate, 3152-1142, restores full potency (100-fold improvement) against the more recently emerged XBB.1.5+F456L variant that escaped AZD3152, maintains potency against previous variants of concern, and shows no additional vulnerability as assessed by DMS. This preemptive mitigation demonstrates a generalizable approach for optimizing existing antibodies against potential future viral escape.
由于病毒的快速进化,大多数先前获批的针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的临床抗体对近期变异株已失去中和活性。为了减轻这种逃逸现象,我们对已获批用于免疫功能低下个体预防的抗体AZD3152进行了预先优化。通过对SARS-CoV-2抗原进行深度突变扫描(DMS),我们确定了抗原位置F456和D420处的AZD3152易感性位点。通过两轮整合基于结构的建模、机器学习和实验验证的计算抗体设计,我们共同优化了AZD3152,使其能够对抗24种当代和既往的SARS-CoV-2变异株,以及20种潜在的未来逃逸变异株。我们的最佳候选抗体3152-1142,对逃避了AZD3152的最近出现的XBB.1.5+F456L变异株恢复了全部效力(提高了100倍),对先前关注的变异株保持效力,并且通过DMS评估未显示出额外的易感性。这种预先缓解策略展示了一种通用方法,可用于优化现有抗体以应对潜在的未来病毒逃逸。