Walshe Blayney W, Baragiola Ben Q, Ferretti Hugo, Gefaell José, Vasmer Michael, Weil Ryohei, Matsuura Takaya, Jaeken Thomas, Pantaleoni Giacomo, Han Zhihua, Hillmann Timo, Menicucci Nicolas C, Tzitrin Ilan, Alexander Rafael N
Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.
RMIT University, Centre for Quantum Computation and Communication Technology, School of Science, Melbourne, Victoria 3000, Australia.
Phys Rev Lett. 2025 Mar 14;134(10):100602. doi: 10.1103/PhysRevLett.134.100602.
High-rate quantum error-correcting codes mitigate the imposing scale of fault-tolerant quantum computers but require efficient generation of nonlocal, many-body entanglement. We provide a linear-optical architecture with these properties, compatible with arbitrary codes and Gottesman-Kitaev-Preskill qubits on generic lattices, and featuring a natural way to leverage physical noise bias. Simulations of hyperbolic surface codes and bivariate bicycle codes, promising families of quantum low-density parity-check codes, reveal a threshold comparable to the 2D surface code with substantially better encoding rates.
高速率量子纠错码可缓解容错量子计算机的巨大规模,但需要高效生成非局域多体纠缠。我们提供了一种具有这些特性的线性光学架构,它与任意码以及通用晶格上的戈特斯曼 - 基塔耶夫 - 普雷斯基尔量子比特兼容,并具有利用物理噪声偏差的自然方式。对双曲线表面码和二元双循环码(有前景的量子低密度奇偶校验码族)的模拟表明,其阈值与二维表面码相当,且编码率显著更高。