Larsen M V, Bourassa J E, Kocsis S, Tasker J F, Chadwick R S, González-Arciniegas C, Hastrup J, Lopetegui-González C E, Miatto F M, Motamedi A, Noro R, Roeland G, Baby R, Chen H, Contu P, Di Luch I, Drago C, Giesbrecht M, Grainge T, Krasnokutska I, Menotti M, Morrison B, Puviraj C, Rezaei Shad K, Hussain B, McMahon J, Ortmann J E, Collins M J, Ma C, Phillips D S, Seymour M, Tang Q Y, Yang B, Vernon Z, Alexander R N, Mahler D H
Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.
Nature. 2025 Jun;642(8068):587-591. doi: 10.1038/s41586-025-09044-5. Epub 2025 Jun 4.
Building a useful photonic quantum computer requires robust techniques to synthesize optical states that can encode qubits. Gottesman-Kitaev-Preskill (GKP) states offer one of the most attractive classes of such qubit encodings, as they enable the implementation of universal gate sets with straightforward, deterministic and room temperature-compatible Gaussian operations. Existing pioneering demonstrations generating optical GKP states and other complex non-Gaussian states have relied on free-space optical components, hindering the scaling eventually required for a utility-scale system. Here we use an ultra-low-loss integrated photonic chip fabricated on a customized multilayer silicon nitride 300-mm wafer platform, coupled over fibre with high-efficiency photon number resolving detectors, to generate GKP qubit states. These states show critical mode-level features necessary for fault tolerance, including at least four resolvable peaks in both p and q quadratures, and a clear lattice structure of negative Wigner function regions, in this case a 3 × 3 grid. We also show that our GKP states show sufficient structure to indicate that the devices used to make them could, after further reduction in optical losses, yield states for the fault-tolerant regime. This experiment validates a key pillar of bosonic architectures for photonic quantum computing, paving the way for arrays of GKP sources that will supply future fault-tolerant machines.
构建一台实用的光子量子计算机需要强大的技术来合成能够编码量子比特的光学态。戈特斯曼 - 基塔耶夫 - 普雷斯基尔(GKP)态提供了这类量子比特编码中最具吸引力的类别之一,因为它们能够通过直接、确定性且与室温兼容的高斯操作来实现通用门集。现有的生成光学GKP态和其他复杂非高斯态的开创性演示依赖于自由空间光学组件,这阻碍了实用规模系统最终所需的扩展。在此,我们使用在定制的多层氮化硅300毫米晶圆平台上制造的超低损耗集成光子芯片,并通过光纤与高效光子数分辨探测器耦合,来生成GKP量子比特态。这些态展现出容错所需的关键模式级特征,包括在p和q正交分量中至少有四个可分辨的峰,以及负维格纳函数区域的清晰晶格结构,在此情况下为一个3×3网格。我们还表明,我们的GKP态具有足够的结构,表明用于制造它们的器件在进一步降低光学损耗后,能够产生适用于容错机制的态。该实验验证了光子量子计算的玻色子架构的一个关键支柱,为将为未来容错机器提供支持的GKP源阵列铺平了道路。