Suppr超能文献

西班牙自闭症谱系障碍队列中的可变剪接分析:计算机预测与特征描述

Alternative splicing analysis in a Spanish ASD (Autism Spectrum Disorders) cohort: in silico prediction and characterization.

作者信息

Dominguez-Alonso S, Tubío-Fungueiriño M, González-Peñas J, Fernández-Prieto M, Parellada M, Arango C, Carracedo A, Rodriguez-Fontenla C

机构信息

Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.

Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), School of Medicine, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, IiSGM, Madrid, Spain.

出版信息

Sci Rep. 2025 Mar 28;15(1):10730. doi: 10.1038/s41598-025-95456-2.

Abstract

Autism Spectrum Disorders (ASD) are complex and genetically heterogeneous neurodevelopmental conditions. Although alternative splicing (AS) has emerged as a potential contributor to ASD pathogenesis, its role in large-scale genomic studies has remained relatively unexplored. In this comprehensive study, we utilized computational tools to identify, predict, and validate splicing variants within a Spanish ASD cohort (360 trios), shedding light on their potential contributions to the disorder. We utilized SpliceAI, a newly developed machine-learning tool, to identify high-confidence splicing variants in the Spanish ASD cohort and applied a stringent threshold (Δ ≥ 0.8) to ensure robust confidence in the predictions. The in silico validation was then conducted using SpliceVault, which provided compelling evidence of the predicted splicing effects, using 335,663 reference RNA-sequencing (RNA-seq) datasets from GTEx v8 and the sequence read archive (SRA). Furthermore, ABSplice was employed for additional orthogonal in silico confirmation and to elucidate the tissue-specific impacts of the splicing variants. Notably, our analysis suggested the contribution of splicing variants within CACNA1I, CBLB, CLTB, DLGAP1, DVL3, KIAA0513, OFD1, PKD1, SLC13A3, and SCN2A. Complementary datasets, including more than 42,000 ASD cases, were employed for gene validation and gene ontology (GO) analysis. These analyses revealed potential tissue-specific effects of the splicing variants, particularly in adipose tissue, testis, and the brain. These findings suggest the involvement of these tissues in ASD etiology, which opens up new avenues for further functional testing. Enrichments in molecular functions and biological processes imply the presence of separate pathways and mechanisms involved in the progression of the disorder, thereby distinguishing splicing genes from other ASD-related genes. Notably, splicing genes appear to be predominantly associated with synaptic organization and transmission, in contrast to non-splicing genes (i.e., genes harboring de novo and inherited coding variants not predicted to alter splicing), which have been mainly implicated in chromatin remodeling processes. In conclusion, this study advances our comprehension of the role of AS in ASD and calls for further investigations, including in vitro validation and integration with multi-omics data, to elucidate the functional roles of the highlighted genes and the intricate interplay of the splicing process with other regulatory mechanisms and tissues in ASD.

摘要

自闭症谱系障碍(ASD)是复杂的、具有遗传异质性的神经发育疾病。尽管可变剪接(AS)已成为ASD发病机制的一个潜在因素,但其在大规模基因组研究中的作用仍相对未被探索。在这项全面的研究中,我们利用计算工具在一个西班牙ASD队列(360个三联体)中识别、预测和验证剪接变体,以揭示它们对该疾病的潜在影响。我们使用了新开发的机器学习工具SpliceAI,在西班牙ASD队列中识别高可信度的剪接变体,并应用严格的阈值(Δ≥0.8)以确保对预测结果有高度的信心。然后使用SpliceVault进行计算机模拟验证,利用来自GTEx v8的335,663个参考RNA测序(RNA-seq)数据集和序列读取存档(SRA),为预测的剪接效应提供了有力证据。此外,还使用ABSplice进行额外的正交计算机模拟确认,并阐明剪接变体的组织特异性影响。值得注意的是,我们的分析表明CACNA1I、CBLB、CLTB、DLGAP1、DVL3、KIAA0513、OFD1、PKD1、SLC13A3和SCN2A内的剪接变体具有影响。补充数据集,包括超过42,000例ASD病例,用于基因验证和基因本体(GO)分析。这些分析揭示了剪接变体潜在的组织特异性影响,特别是在脂肪组织、睾丸和大脑中。这些发现表明这些组织参与了ASD的病因学,为进一步的功能测试开辟了新途径。分子功能和生物学过程的富集意味着在疾病进展中存在不同的途径和机制,从而将剪接基因与其他ASD相关基因区分开来。值得注意的是,与非剪接基因(即携带预计不会改变剪接的新生和遗传编码变体的基因)相比,剪接基因似乎主要与突触组织和传递有关,非剪接基因主要涉及染色质重塑过程。总之,本研究推进了我们对AS在ASD中作用的理解,并呼吁进行进一步的研究,包括体外验证以及与多组学数据整合,以阐明突出显示的基因的功能作用以及剪接过程与ASD中其他调控机制和组织的复杂相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/711e/11953252/84542e0e042f/41598_2025_95456_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验