Suppr超能文献

系统分析剪接变异可在 10 万基因组计划中发现新的诊断结果。

A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project.

机构信息

Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK.

Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK.

出版信息

Genome Med. 2022 Jul 26;14(1):79. doi: 10.1186/s13073-022-01087-x.

Abstract

BACKGROUND

Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data.

METHODS

Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify constrained functional variant classes near exon-intron junctions and at putative splicing branchpoints. To identify new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals with de novo single-nucleotide variants near exon-intron boundaries and at putative splicing branchpoints in known disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new molecular diagnoses through clinical variant interpretation and functional RNA studies.

RESULTS

We show that near-splice positions and splicing branchpoints are highly constrained by purifying selection and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequencing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four in whom RNA studies were performed.

CONCLUSIONS

Overall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals with unsolved rare diseases.

摘要

背景

导致罕见遗传病的主要原因是破坏剪接的基因组变异。然而,位于规范剪接位点之外的变异在临床上很难解释。改善对非规范剪接变异的临床解释为提高全基因组测序数据的诊断产量提供了重大机会。

方法

在这里,我们研究了来自 10 万基因组计划中的 38688 个人的全基因组测序数据中的剪接变异景观,并评估了非规范剪接变异对罕见遗传病的贡献。我们使用一种基于变异的约束度量(调整突变率的单倍体比例)来识别外显子-内含子交界处和潜在剪接分支点附近的约束功能变异类。为了为 10 万基因组计划中未解决的罕见疾病个体确定新的诊断,我们在已知疾病基因中识别了外显子-内含子边界附近和潜在剪接分支点附近具有新生单核苷酸变异的个体。我们通过手动表型匹配来识别候选诊断变异,并通过临床变异解释和功能性 RNA 研究来确认新的分子诊断。

结果

我们表明,接近剪接位置和剪接分支点受到强烈的纯化选择约束,并含有潜在的有害非编码变异,这些变异可通过测序数据进行系统分析。在已知罕见疾病基因中的 258 个新生剪接变异中,我们在未解决的罕见疾病患者的先证者中确定了 35 个新的可能诊断。迄今为止,我们已经确认了六名个体的新诊断,其中包括四名进行了 RNA 研究的个体。

结论

总体而言,我们证明了在未解决的罕见疾病个体中检查非规范剪接变异的临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b3e/9327385/e779c6e7157b/13073_2022_1087_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验