Bebawy Abraam S, Saad Bishoy T, Saad Mina T, Mosaad Gamal S, Gomaa Fatma Alzahraa M, Alshahrani Mohammad Y, Aboshanab Khaled M
Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt.
Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia.
J Appl Genet. 2025 Mar 29. doi: 10.1007/s13353-025-00962-8.
Microbial metagenomic identification is generally attributed to the specificity and type of the bioinformatic tools, including classifiers and visualizers. In this study, the performance of two major classifiers, Centrifuge and Kraken2, and two visualizers (Recentrifuge and Krona) has been thoroughly investigated for their efficiency in the identification of the microorganisms using the Whole-Genome Sequence (WGS) database and four targeted databases including NCBI, Silva, Greengenes, and Ribosomal Database Project (RDP). Two standard DNA metagenomic library replicates, Zymo and Zymo-1, were used as quality control. Results showed that Centrifuge gave a higher percentage of Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica identification than Kraken2. Compared to Recentrifuge, Kraken2 was more accurate in identifying Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, and Cryptococcus neoformans. The results of the rest of the detected microorganisms were generally consistent with the two classifiers. Regarding visualizers, both Recentrifuge and Krona provided similar results regarding the abundance of each microbial species regardless of the classifier used. The differences in results between the two mentioned classifiers may be attributed to the specific algorithms each method uses and the sequencing depth. Centrifuge uses a read mapping approach, while Kraken2 uses a k-mer-based system to classify the sequencing reads into taxonomic groups. In conclusion, both Centrifuge and Kraken2 are effective tools for microbial classification. However, the choice of classifier can influence the accuracy of microbial classification and, therefore, should be made carefully, depending on the desired application, even when the same reference database is used.
微生物宏基因组鉴定通常归因于生物信息学工具的特异性和类型,包括分类器和可视化工具。在本研究中,对两种主要分类器Centrifuge和Kraken2以及两种可视化工具(Recentrifuge和Krona)在使用全基因组序列(WGS)数据库以及包括NCBI、Silva、Greengenes和核糖体数据库项目(RDP)在内的四个目标数据库鉴定微生物方面的效率进行了全面研究。使用两个标准DNA宏基因组文库复制品Zymo和Zymo-1作为质量控制。结果表明,与Kraken2相比,Centrifuge对铜绿假单胞菌、大肠杆菌和肠炎沙门氏菌的鉴定百分比更高。与Recentrifuge相比,Kraken2在鉴定金黄色葡萄球菌、单核细胞增生李斯特菌、枯草芽孢杆菌和新型隐球菌方面更准确。其余检测到的微生物的结果在这两种分类器之间总体上是一致的。关于可视化工具,无论使用哪种分类器,Recentrifuge和Krona在每种微生物物种丰度方面提供的结果相似。上述两种分类器结果的差异可能归因于每种方法使用的特定算法和测序深度。Centrifuge使用读段映射方法,而Kraken2使用基于k-mer的系统将测序读段分类到分类组中。总之,Centrifuge和Kraken2都是微生物分类的有效工具。然而,分类器的选择会影响微生物分类的准确性,因此,即使使用相同的参考数据库,也应根据预期应用谨慎选择。