Suppr超能文献

PinMyMetal:一种用于精确模拟大分子中过渡金属结合位点的混合学习系统。

PinMyMetal: a hybrid learning system to accurately model transition metal binding sites in macromolecules.

作者信息

Zhang Huihui, Zhong Juanhong, Gucwa Michal, Zhang Yishuai, Ma Haojie, Deng Lei, Mao Longfei, Minor Wladek, Wang Nasui, Zheng Heping

机构信息

Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.

Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China.

出版信息

Nat Commun. 2025 Mar 28;16(1):3043. doi: 10.1038/s41467-025-57637-5.

Abstract

Metal ions are vital components in many proteins for the inference and engineering of protein function, with coordination complexity linked to structural, catalytic, or regulatory roles. Modeling transition metal ions, especially in transient, reversible, and concentration-dependent regulatory sites, remains challenging. We present PinMyMetal (PMM), a hybrid machine learning system designed to accurately predict transition metal localization and environment in macromolecules, tailored to tetrahedral and octahedral geometries. PMM outperforms other predictors, achieving high accuracy in ligand and coordinate predictions. It excels in predicting regulatory sites (median deviation 0.36 Å), demonstrating superior accuracy in locating catalytic sites (0.33 Å) and structural sites (0.19 Å). Each predicted site is assigned a certainty score based on local structural and physicochemical features, independent of homologs. Interactive validation through our server, CheckMyMetal, expands PMM's scope, enabling it to pinpoint and validate diverse functional metal sites from different structure sources (predicted structures, cryo-EM, and crystallography). This facilitates residue-wise assessment and robust metal binding site design. The lightweight PMM system demands minimal computing resources and is available at https://PMM.biocloud.top . The PMM workflow can interrogate with protein sequence to characterize the localization of the most probable transition metals, which is often interchangeable and hard to differentiate by nature.

摘要

金属离子是许多蛋白质中推断和设计蛋白质功能的重要组成部分,其配位复杂性与结构、催化或调节作用相关。对过渡金属离子进行建模,尤其是在瞬态、可逆和浓度依赖性调节位点,仍然具有挑战性。我们提出了PinMyMetal(PMM),这是一种混合机器学习系统,旨在准确预测大分子中过渡金属的定位和环境,适用于四面体和八面体几何结构。PMM优于其他预测器,在配体和配位预测方面具有高精度。它在预测调节位点(中位偏差0.36 Å)方面表现出色,在定位催化位点(0.33 Å)和结构位点(0.19 Å)方面显示出卓越的准确性。每个预测位点都根据局部结构和物理化学特征分配一个确定性分数,与同源物无关。通过我们的服务器CheckMyMetal进行交互式验证,扩展了PMM的范围,使其能够从不同的结构来源(预测结构、冷冻电镜和晶体学)中精确识别和验证各种功能性金属位点。这有助于逐残基评估和稳健的金属结合位点设计。轻量级的PMM系统所需计算资源极少,可在https://PMM.biocloud.top获取。PMM工作流程可以通过蛋白质序列进行查询,以表征最可能的过渡金属的定位,这些过渡金属在本质上往往是可互换的且难以区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e5b/11953438/6ebb5b03d827/41467_2025_57637_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验