Suppr超能文献

实现生命科学领域的全球图像数据共享。

Enabling global image data sharing in the life sciences.

作者信息

Bajcsy Peter, Bhattiprolu Sreenivas, Börner Katy, Cimini Beth A, Collinson Lucy, Ellenberg Jan, Fiolka Reto, Giger Maryellen, Goscinski Wojtek, Hartley Matthew, Hotaling Nathan, Horwitz Rick, Jug Florian, Kemmer Isabel, Kreshuk Anna, Lundberg Emma, Mathur Aastha, Narayan Kedar, Onami Shuichi, Plant Anne L, Prior Fred, Swedlow Jason R, Taylor Adam, Keppler Antje

机构信息

National Institute of Standards and Technology, Gaithersburg, MD, USA.

ZEISS Microscopy Customer Center, Dublin, OH, USA.

出版信息

Nat Methods. 2025 Apr;22(4):672-676. doi: 10.1038/s41592-024-02585-z. Epub 2025 Mar 28.

Abstract

Despite the importance of imaging in biological and medical research, a large body of informative and precious image data never sees the light of day. To ensure scientific rigor as well as the reuse of data for scientific discovery, image data need to be made FAIR (findable, accessible, interoperable and reusable). Image data experts are working together globally to agree on common data formats, metadata, ontologies and supporting tools toward image data FAIRification. With this Perspective, we call on public funders to join these efforts to support their national scientists. What researchers most urgently need are openly accessible resources for image data storage that are operated under long-term commitments by their funders. Although existing resources in Australia, Japan and Europe are already collaborating to enable global image data sharing, these efforts will fall short unless more countries invest in operating and federating their own open data resources. This will allow us to harvest the enormous potential of existing image data, preventing substantial loss of unrealized value from past investments in imaging acquisition infrastructure.

摘要

尽管成像在生物学和医学研究中至关重要,但大量丰富且珍贵的图像数据却从未见天日。为确保科学严谨性以及数据能用于科学发现的再利用,图像数据需要实现FAIR(可查找、可访问、可互操作和可再利用)。图像数据专家正在全球范围内共同努力,就通用数据格式、元数据、本体论和支持工具达成共识,以实现图像数据的FAIR化。基于此观点,我们呼吁公共资助者加入这些努力,以支持本国科学家。研究人员最迫切需要的是由资助者长期运营的、可公开访问的图像数据存储资源。尽管澳大利亚、日本和欧洲现有的资源已经在合作以实现全球图像数据共享,但除非有更多国家投资运营和联合其自己的开放数据资源,否则这些努力将难以满足需求。这将使我们能够挖掘现有图像数据的巨大潜力,避免过去在成像采集基础设施方面的投资造成大量未实现价值的损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验