Suppr超能文献

运用人工神经网络-遗传算法和响应面法技术提取耳状耳盘菌的优化及生物活性

Extract optimization and biological activities of Otidea onotica using Artificial Neural Network-Genetic Algorithm and response surface methodology techniques.

作者信息

Sevindik Mustafa, Bal Celal, Krupodorova Tetiana, Gürgen Ayşenur, Eraslan Emre Cem

机构信息

Department of Biology, Faculty of Engineering and Natural Sciences, University of Osmaniye Korkut Ata, Osmaniye, 80000, Turkey.

Gaziantep University, Oguzeli Vocational School, Gaziantep, Turkey.

出版信息

BMC Biotechnol. 2025 Mar 28;25(1):25. doi: 10.1186/s12896-025-00960-y.

Abstract

In this study, the biological activities of Otidea onotica were investigated using two optimization methods, Response Surface Methodology (RSM) and Artificial Neural Network-Genetic Algorithm (ANN-GA). The extracts were tested for phenolic content, antioxidant potential, acetylcholinesterase and butyrylcholinesterase inhibitory activities and antiproliferative effects against A549 lung cancer cell line. The results show that the extracts obtained by ANN-GA optimization exhibited higher antioxidant activity compared to RSM extracts and had higher total antioxidant status (TAS), DPPH and FRAP values. Phenolic content analysis revealed eight phenolic compounds and the compounds with the highest concentrations were caffeic acid (in RSM extract) and gallic acid (in ANN-GA extract), respectively. Both extracts showed strong cytotoxic effects against A549 cells depending on the concentration, with ANN-GA extract showing higher antiproliferative activity. Our study provides important findings on the biological activities and therapeutic potential of O. onotica and particularly reveals that the ANN-GA optimization method plays an important role in increasing biological activity. The findings show that O. onotica extracts can be used in the treatment of cancer and neurodegenerative diseases in the future and that optimization techniques offer an effective strategy for enriching phenolic contents.

摘要

在本研究中,使用响应面法(RSM)和人工神经网络-遗传算法(ANN-GA)这两种优化方法,对奥氏耳盘菌的生物活性进行了研究。对提取物进行了酚类含量、抗氧化潜力、乙酰胆碱酯酶和丁酰胆碱酯酶抑制活性以及对A549肺癌细胞系的抗增殖作用测试。结果表明,通过ANN-GA优化获得的提取物与RSM提取物相比,具有更高的抗氧化活性,并且具有更高的总抗氧化状态(TAS)、DPPH和FRAP值。酚类含量分析揭示了8种酚类化合物,浓度最高的化合物分别是咖啡酸(在RSM提取物中)和没食子酸(在ANN-GA提取物中)。两种提取物根据浓度对A549细胞均显示出较强的细胞毒性作用,其中ANN-GA提取物显示出更高的抗增殖活性。我们的研究提供了关于奥氏耳盘菌生物活性和治疗潜力的重要发现,尤其揭示了ANN-GA优化方法在提高生物活性方面发挥着重要作用。研究结果表明,奥氏耳盘菌提取物未来可用于治疗癌症和神经退行性疾病,并且优化技术为富集酚类含量提供了一种有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/187d/11954354/b0b42b1853e8/12896_2025_960_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验