Suppr超能文献

基于单细胞 RNA-Seq 数据生成和分析特定于上下文的基因组规模代谢模型。

Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data.

机构信息

Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

Wallenberg Center for Protein Research, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2217868120. doi: 10.1073/pnas.2217868120. Epub 2023 Jan 31.

Abstract

Single-cell RNA sequencing combined with genome-scale metabolic models (GEMs) has the potential to unravel the differences in metabolism across both cell types and cell states but requires new computational methods. Here, we present a method for generating cell-type-specific genome-scale models from clusters of single-cell RNA-Seq profiles. Specifically, we developed a method to estimate the minimum number of cells required to pool to obtain stable models, a bootstrapping strategy for estimating statistical inference, and a faster version of the task-driven integrative network inference for tissues algorithm for generating context-specific GEMs. In addition, we evaluated the effect of different RNA-Seq normalization methods on model topology and differences in models generated from single-cell and bulk RNA-Seq data. We applied our methods on data from mouse cortex neurons and cells from the tumor microenvironment of lung cancer and in both cases found that almost every cell subtype had a unique metabolic profile. In addition, our approach was able to detect cancer-associated metabolic differences between cancer cells and healthy cells, showcasing its utility. We also contextualized models from 202 single-cell clusters across 19 human organs using data from Human Protein Atlas and made these available in the web portal Metabolic Atlas, thereby providing a valuable resource to the scientific community. With the ever-increasing availability of single-cell RNA-Seq datasets and continuously improved GEMs, their combination holds promise to become an important approach in the study of human metabolism.

摘要

单细胞 RNA 测序与基因组规模代谢模型(GEM)相结合,具有揭示细胞类型和细胞状态代谢差异的潜力,但需要新的计算方法。在这里,我们提出了一种从单细胞 RNA-Seq 谱聚类中生成细胞类型特异性基因组规模模型的方法。具体来说,我们开发了一种方法来估计需要汇集多少细胞以获得稳定模型的最小数量,一种用于估计统计推断的自举策略,以及一种用于生成特定于上下文的 GEM 的任务驱动综合网络推断算法的更快版本。此外,我们评估了不同 RNA-Seq 归一化方法对模型拓扑和单细胞 RNA-Seq 数据生成模型差异的影响。我们将我们的方法应用于来自小鼠皮层神经元和肺癌肿瘤微环境的细胞数据,在这两种情况下,我们发现几乎每个细胞亚型都有独特的代谢特征。此外,我们的方法能够检测到癌症细胞和健康细胞之间与癌症相关的代谢差异,展示了其用途。我们还使用 Human Protein Atlas 中的数据对来自 19 个人类器官的 202 个单细胞簇进行了模型上下文化,并将其在代谢图谱网络门户中提供,从而为科学界提供了有价值的资源。随着单细胞 RNA-Seq 数据集的可用性不断增加和 GEM 的不断改进,它们的组合有望成为人类代谢研究的重要方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f88/9963017/99b0818f55a1/pnas.2217868120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验