Suppr超能文献

通过规范模型自训练增强医学图像分割中的无源域适应

Enhancing source-free domain adaptation in Medical Image Segmentation via regulated model self-training.

作者信息

Zhang Tianwei, Li Kang, Gu Shi, Heng Pheng-Ann

机构信息

School of Computer and Engineering, University of Electronic Science and Technology of China, UESTC, China.

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, UESTC, China; Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.

出版信息

Med Image Anal. 2025 May;102:103543. doi: 10.1016/j.media.2025.103543. Epub 2025 Mar 22.

Abstract

Source-free domain adaptation (SFDA) has drawn increasing attention lately in the medical field. It aims to adapt a model well trained on source domain to target domains without accessing source domain data nor requiring target domain labels, to enable privacy-protecting and annotation-efficient domain adaptation. Most SFDA approaches initialize the target model with source model weights, and guide model self-training with the pseudo-labels generated from the source model. However, when source and target domains have huge discrepancies (e.g., different modalities), the obtained pseudo-labels would be of poor quality. Different from prior works that overcome it by refining pseudo-labels to better quality, in this work, we try to explore it from the perspective of knowledge transfer. We recycle the beneficial domain-invariant prior knowledge in the source model, and refresh its domain-specific knowledge from source-specific to target-specific, to help the model satisfyingly tackle target domains even when facing severe domain shifts. To achieve it, we proposed a regulated model self-training framework. For high-transferable domain-invariant parameters, we constrain their update magnitude from large changes, to secure the domain-shared priors from going stray and let it continuously facilitate target domain adaptation. For the low-transferable domain-specific parameters, we actively update them to let the domain-specific embedding become target-specific. Regulating them together, the model would develop better capability for target data even under severe domain shifts. Importantly, the proposed approach could seamlessly collaborate with existing pseudo-label refinement approaches to bring more performance gains. We have extensively validated our framework under significant domain shifts in 3D cross-modality cardiac segmentation, and under minor domain shifts in 2D cross-vendor fundus segmentation, respectively. Our approach consistently outperformed the competing methods and achieved superior performance.

摘要

无源域适应(SFDA)最近在医学领域受到了越来越多的关注。它旨在使在源域上训练良好的模型适应目标域,而无需访问源域数据也不需要目标域标签,以实现隐私保护和标注高效的域适应。大多数SFDA方法使用源模型权重初始化目标模型,并使用从源模型生成的伪标签来指导模型的自我训练。然而,当源域和目标域存在巨大差异(例如,不同的模态)时,所获得的伪标签质量会很差。与通过将伪标签细化为更高质量来克服这一问题的先前工作不同,在这项工作中,我们尝试从知识转移的角度来探索它。我们循环利用源模型中有益的域不变先验知识,并将其特定于源域的知识更新为特定于目标域的知识,以帮助模型即使在面临严重的域转移时也能令人满意地处理目标域。为了实现这一点,我们提出了一个受调节的模型自我训练框架。对于高可转移的域不变参数,我们限制其更新幅度,防止其发生大幅变化,以确保域共享先验知识不会偏离正轨,并使其持续促进目标域适应。对于低可转移的特定于域的参数,我们积极更新它们,以使特定于域的嵌入变为特定于目标域的。通过一起调节它们,即使在严重的域转移情况下,模型也能更好地处理目标数据。重要的是,所提出的方法可以与现有的伪标签细化方法无缝协作,带来更多的性能提升。我们分别在3D跨模态心脏分割中的显著域转移和2D跨供应商眼底分割中的微小域转移情况下,对我们的框架进行了广泛验证。我们的方法始终优于竞争方法,并取得了卓越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验