Feng Wang, Wen-Long Xu, Zhi-Guo Xu, Yun Wang, Hai-Ying Yang, Yi-Zhu Chen, Ke Lv, Lei Shi
Huzhou Central Blood Station, Huzhou, China.
Yangsi Hospital, Shanghai, China.
Transfus Clin Biol. 2025 May;32(2):185-194. doi: 10.1016/j.tracli.2025.03.005. Epub 2025 Mar 27.
With advances in medical technology and an aging population, the demand for single-donor platelet transfusions is increasing because of their significant therapeutic effects. However, the short shelf-life of platelets and the lack of large-scale reserves make accurate demand forecasting crucial for blood bank inventory management, resource allocation and clinical supply.
This study aims to forecast platelet demand trends via time series analysis, specifically the SARIMA model, to provide scientific evidence for blood banks, optimize resource allocation and improve clinical supply efficiency.
Monthly aggregate data from type A BPC units supplied by Huzhou Central Blood Station from January 2015 to December 2023 were collected. By analyzing these data, a SARIMA model was constructed to predict platelet demand in the first half of 2024.
The SARIMA(0,1,1)(0,1,1) model performed best in terms of goodness of fit and Bayesian information criterion (BIC) tests and accurately predicted platelet demand. The predicted results revealed that the actual monthly supply in the first half of 2024 was within the 95% confidence interval of the forecast, with a mean relative error of 3.61%.
The SARIMA model effectively predicts platelet demand, providing a practical tool for blood banks to optimize inventory management and clinical supply. Future research should explore further optimizations and improvements to better serve clinical needs and resource management.
随着医学技术的进步和人口老龄化,单供体血小板输注因其显著的治疗效果而需求不断增加。然而,血小板的保质期短且缺乏大规模储备,使得准确的需求预测对于血库库存管理、资源分配和临床供应至关重要。
本研究旨在通过时间序列分析,特别是自回归积分移动平均模型(SARIMA)预测血小板需求趋势,为血库提供科学依据,优化资源分配并提高临床供应效率。
收集了湖州市中心血站2015年1月至2023年12月供应的A型血小板单位的月度汇总数据。通过分析这些数据,构建了一个SARIMA模型来预测2024年上半年的血小板需求。
SARIMA(0,1,1)(0,1,1)模型在拟合优度和贝叶斯信息准则(BIC)检验方面表现最佳,并准确预测了血小板需求。预测结果显示,2024年上半年的实际月供应量在预测的95%置信区间内,平均相对误差为3.61%。
SARIMA模型有效地预测了血小板需求,为血库优化库存管理和临床供应提供了实用工具。未来的研究应探索进一步的优化和改进,以更好地满足临床需求和资源管理。