Suppr超能文献

控制牙结石可预防鼻咽癌放疗患者发生严重的放射性口腔黏膜炎。

Control of dental calculus Prevents severe Radiation-Induced oral mucositis in patients undergoing radiotherapy for nasopharyngeal carcinoma.

作者信息

Zeng Yu, Hu Yue, Wang Linjing, Liao Zhiwei, Tan Jianming, Kuang Yanhao, Gong Pan, Qi Bin, Zhen Xin

机构信息

Department of Stomatology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, People's Republic of China.

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.

出版信息

Radiother Oncol. 2025 Jun;207:110872. doi: 10.1016/j.radonc.2025.110872. Epub 2025 Mar 27.

Abstract

PURPOSE

This study aims to develop an artificial intelligence model to predict severe radiation-induced oral mucositis (RIOM) in patients with locally advanced nasopharyngeal carcinoma (LA-NPC) and verify the risk factors associated with severe RIOM.

METHODS AND MATERIALS

A total of 578 patients diagnosed with LA-NPC and undergoing radiotherapy were enrolled in this study. This cohort comprised 430 retrospective patients used for model development/validation, and 148 patients for the prospective verification study. Multifaceted data related to RIOM were collected to build an explainable multi-classifier fusion (MCF) model to identify severe RIOM associated risk factors. A prospective study was designed to validate the key risk factors.

RESULTS

The MCF model demonstrated satisfactory performance in severe RIOM prediction when integrating all dosimetric, clinical, and oral features, with an AUC of 0.904, ACC of 0.849, SEN of 0.853 and SPE of 0.846 on the independent testing set. The dental calculus index of 2 was identified as a significant key risk factor for developing RIOM. The severe RIOM rate in the prospective intervention cohort was 8.1 % (95 % CI:4.3 %∼13.7 %), lower than that in the model development cohort, with a decrease of 31 % (95 % CI23.9 %∼36.8 %, p < 0.0001).

CONCLUSIONS

The developed model can serve as a valuable tool for providing timely alerts for high-risk patients with the severe RIOM and assisting physicians in optimizing treatment management. The dental calculus index is a key independent risk factor for severe RIOM. The effective control of the dental calculus can significantly mitigate the onset of severe RIOM.

CLINICALTRIALS

gov: NCT05858385.

摘要

目的

本研究旨在开发一种人工智能模型,以预测局部晚期鼻咽癌(LA-NPC)患者严重放射性口腔黏膜炎(RIOM)的发生,并验证与严重RIOM相关的危险因素。

方法和材料

本研究共纳入578例诊断为LA-NPC并接受放疗的患者。该队列包括430例用于模型开发/验证的回顾性患者和148例用于前瞻性验证研究的患者。收集与RIOM相关的多方面数据,以建立一个可解释的多分类器融合(MCF)模型,以识别与严重RIOM相关的危险因素。设计了一项前瞻性研究来验证关键危险因素。

结果

当整合所有剂量学、临床和口腔特征时,MCF模型在严重RIOM预测方面表现出令人满意的性能,在独立测试集上的AUC为0.904,ACC为0.849,SEN为0.853,SPE为0.846。牙结石指数为2被确定为发生RIOM的一个重要关键危险因素。前瞻性干预队列中的严重RIOM发生率为8.1%(95%CI:4.3%∼13.7%),低于模型开发队列,下降了31%(95%CI 23.9%∼36.8%,p<0.0001)。

结论

所开发的模型可作为一种有价值的工具,为严重RIOM的高危患者提供及时预警,并协助医生优化治疗管理。牙结石指数是严重RIOM的一个关键独立危险因素。有效控制牙结石可显著减轻严重RIOM的发生。

临床试验

gov:NCT05858385。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验