Hu Yue, Zeng Yu, Wang Linjing, Liao Zhiwei, Tan Jianming, Kuang Yanhao, Gong Pan, Qi Bin, Zhen Xin
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Department of Stomatology.
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Dec 20;44(12):2434-2442. doi: 10.12122/j.issn.1673-4254.2024.12.20.
To evaluate the performance of different multi-modality fusion models for predicting radiation-induced oral mucositis (RIOM) following radiotherapy in patients with nasopharyngeal carcinoma (NPC).
We retrospectively collected the data from 198 patients with locally advanced NPC who experienced RIOM following radiotherapy at the Affiliated Tumor Hospital of Guangzhou Medical University from September, 2022 to February, 2023. Based on oral radiation dose-volume parameters and clinical features of NPC, basic classification models were developed using different combinations of feature selection algorithms and classifiers and integrated using a multi-criterion decision-making (MCDM)-based classifier fusion (MCF) strategy and its variant, the H-MCF model. The basic classification models, MCF model, the H-MCF model with a single modality or multiple modalities and other ensemble classifiers were compared for performances for predicting RIOM by assessing the area under the ROC curve (AUC), accuracy, sensitivity, and specificity.
The H-MCF model, which integrated multi-modality features, achieved the highest accuracy for predicting severe RIOM with an AUC of 0.883, accuracy of 0.850, sensitivity of 0.933, and specificity of 0.800.
Compared with each of the individual classifiers, the multimodal multi-classifier fusion algorithm combining clinical and dosimetric modalities demonstrates superior performance in predicting the incidence of severe RIOM in NPC patients following radiotherapy.
评估不同多模态融合模型在预测鼻咽癌(NPC)患者放疗后放射性口腔黏膜炎(RIOM)方面的性能。
我们回顾性收集了2022年9月至2023年2月期间在广州医科大学附属肿瘤医院接受放疗后发生RIOM的198例局部晚期NPC患者的数据。基于NPC的口腔放射剂量体积参数和临床特征,使用不同的特征选择算法和分类器组合开发基本分类模型,并使用基于多准则决策(MCDM)的分类器融合(MCF)策略及其变体H-MCF模型进行集成。通过评估受试者工作特征曲线下面积(AUC)、准确率、敏感性和特异性,比较基本分类模型、MCF模型、单模态或多模态的H-MCF模型以及其他集成分类器在预测RIOM方面的性能。
整合多模态特征的H-MCF模型在预测重度RIOM方面取得了最高准确率,AUC为0.883,准确率为0.850,敏感性为0.933,特异性为0.800。
与单个分类器相比,结合临床和剂量学模态的多模态多分类器融合算法在预测NPC患者放疗后重度RIOM的发生率方面表现出卓越性能。