Park Junhyeon, Polizzi Karen M, Kim Jongmin, Kim Juhyun
School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.
Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
J Biol Eng. 2025 Mar 29;19(1):27. doi: 10.1186/s13036-025-00495-y.
Minicells are chromosome-free derivatives of bacteria formed through irregular cell division. Unlike simplified structures, minicells retain all cellular components of the parent cell except for the chromosome. This feature reduces immunogenic responses, making them advantageous for various biotechnological applications, including chemical production and drug delivery. To effectively utilize minicells, it is essential to ensure the accumulation of target proteins within them, enhancing their efficiency as delivery vehicles.
In this study, we engineered Escherichia coli by deleting the minCD genes, generating minicell-producing strains, and investigated strategies to enhance protein accumulation within the minicells. Comparative proteomic analysis revealed that minicells retain most parent-cell proteins but exhibit an asymmetric proteome distribution, leading to selective protein enrichment. We demonstrated that heterologous proteins, such as GFP and RFP, accumulate more abundantly in minicells than in parent cells, regardless of expression levels. To further enhance this accumulation, we manipulated protein localization by fusing target proteins to polar localization signals. While proteins fused with PtsI and Tsr exhibited 2.6-fold and 2.8-fold increases in accumulation, respectively, fusion with the heterologous PopZ protein resulted in a remarkable 15-fold increase in protein concentration under low induction conditions.
These findings highlight the critical role of spatial protein organization in enhancing the cargo-loading capabilities of minicells. By leveraging polar localization signals, this work provides a robust framework for optimizing minicells as efficient carriers for diverse applications, from therapeutic delivery to industrial biomanufacturing.
微细胞是细菌通过不规则细胞分裂形成的无染色体衍生物。与简化结构不同,微细胞保留了亲本细胞的所有细胞成分,除了染色体。这一特性降低了免疫原性反应,使其在包括化学生产和药物递送在内的各种生物技术应用中具有优势。为了有效利用微细胞,确保目标蛋白在其中积累,提高其作为递送载体的效率至关重要。
在本研究中,我们通过删除minCD基因对大肠杆菌进行工程改造,生成微细胞产生菌株,并研究了增强微细胞内蛋白质积累的策略。比较蛋白质组学分析表明,微细胞保留了大多数亲本细胞蛋白质,但呈现不对称的蛋白质组分布,导致选择性蛋白质富集。我们证明,无论表达水平如何,绿色荧光蛋白(GFP)和红色荧光蛋白(RFP)等异源蛋白在微细胞中的积累比在亲本细胞中更丰富。为了进一步增强这种积累,我们通过将目标蛋白与极性定位信号融合来操纵蛋白质定位。虽然与磷酸烯醇式丙酮酸糖磷酸转运蛋白(PtsI)和趋化受体蛋白(Tsr)融合的蛋白质积累分别增加了2.6倍和2.8倍,但在低诱导条件下,与异源PopZ蛋白融合导致蛋白质浓度显著增加了15倍。
这些发现突出了蛋白质空间组织在增强微细胞货物装载能力中的关键作用。通过利用极性定位信号,这项工作为优化微细胞作为从治疗递送工业生物制造等各种应用的高效载体提供了一个强大的框架。