Suppr超能文献

笔迹笔画作为阿尔茨海默病预测的生物标志物:一种新型机器学习方法。

Handwriting strokes as biomarkers for Alzheimer's disease prediction: A novel machine learning approach.

作者信息

Nardone Emanuele, De Stefano Claudio, Cilia Nicole Dalia, Fontanella Francesco

机构信息

Department of Electrical and Information Engineering (DIEI), University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043, Cassino, Italy.

Department of Computer Engineering, University of Enna "Kore", Cittadella Universitaria, Enna, Italy.

出版信息

Comput Biol Med. 2025 May;190:110039. doi: 10.1016/j.compbiomed.2025.110039. Epub 2025 Mar 29.

Abstract

In recent years, machine learning-based handwriting analysis has emerged as a valuable tool for supporting the early diagnosis of Alzheimer's disease and predicting its progression. Traditional approaches represent handwriting tasks using a single feature vector, where each feature is computed as the mean over elementary handwriting traits or strokes. We propose a novel approach that analyzes each stroke individually, preserving fine-grained movement information that is critical for detecting subtle handwriting changes that may indicate cognitive decline. We evaluated this method on 34 handwriting tasks collected from 174 participants, extracting dynamic and static features from both on-paper and in-air movements. Using a machine learning framework including classification strategies, feature selection techniques, and ensemble methods like ranking-based and stacking approaches, we were able to effectively model stroke-level variations. The ranking-based ensemble achieved the highest accuracy of 80.18% using all features while stacking performed best for in-air movements with 76.67% accuracy. Feature importance analysis through SHAP revealed that certain tasks, particularly sentence writing under dictation, were consistently more predictive. The experimental results demonstrate the effectiveness of our stroke-level analysis approach, which outperformed aggregated statistical methods on 24 out of 34 handwriting tasks, validating the diagnostic value of examining individual movement patterns.

摘要

近年来,基于机器学习的笔迹分析已成为支持阿尔茨海默病早期诊断和预测其进展的一种有价值的工具。传统方法使用单个特征向量来表示笔迹任务,其中每个特征是根据基本笔迹特征或笔画的平均值来计算的。我们提出了一种新颖的方法,该方法单独分析每个笔画,保留细粒度的运动信息,这对于检测可能表明认知衰退的细微笔迹变化至关重要。我们在从174名参与者收集的34项笔迹任务上评估了这种方法,从纸上和空中运动中提取动态和静态特征。使用包括分类策略、特征选择技术以及基于排名和堆叠方法等集成方法的机器学习框架,我们能够有效地对笔画级别的变化进行建模。基于排名的集成方法使用所有特征时达到了最高准确率80.18%,而堆叠方法在空中运动方面表现最佳,准确率为76.67%。通过SHAP进行的特征重要性分析表明,某些任务,特别是听写句子书写,始终具有更强的预测性。实验结果证明了我们笔画级别分析方法的有效性,该方法在34项笔迹任务中的24项上优于聚合统计方法,验证了检查个体运动模式的诊断价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验