Sun Yuan, Chen Yuhan, Dong La, Hu Daoyan, Zhang Xiaohui, Jin Chentao, Zhou Rui, Zhang Jucheng, Dou Xiaofeng, Wang Jing, Xue Le, Xiao Meiling, Zhong Yan, Tian Mei, Zhang Hong
Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
Eur J Nucl Med Mol Imaging. 2025 Mar 31. doi: 10.1007/s00259-025-07228-9.
This study aims to calculate the diagnostic performance of deep learning (DL)-assisted F-fluorodeoxyglucose ([F]FDG) PET imaging in Alzheimer's disease (AD).
The Ovid MEDLINE, Ovid Embase, Web of Science Core Collection, Cochrane, and IEEE Xplore databases were searched for related studies from inception to May 24, 2024. We included original studies that developed a DL algorithm for [F]FDG PET imaging to assess diagnostic performance in classifying AD, mild cognitive impairment (MCI), and normal control (NC). A bivariate random-effects model was employed to assess the area under the curve (AUC).
We identified 36 studies that met the inclusion criteria. Of these, 35 studies distinguished AD from NC, with a pooled AUC of 0.98 (95% CI: 0.96-0.99). Thirteen studies distinguished AD from MCI, with a pooled AUC of 0.95 (95% CI: 0.92-0.96). Nineteen studies distinguished MCI from NC, with a pooled AUC of 0.94 (95% CI: 0.91-0.95). Additionally, we found large amounts of heterogeneity across studies which could be partially attributed to variations in DL methods and imaging modalities.
This systematic review and meta-analysis shows that DL-assisted [F]FDG PET imaging has high diagnostic performance in identifying AD. The significant heterogeneity among studies underscores the necessity for future research to incorporate external validation, utilize large sample size, and adhere to rigorous guideline to provide robust support for clinical decision-making.
本研究旨在计算深度学习(DL)辅助的F-氟脱氧葡萄糖([F]FDG)PET成像在阿尔茨海默病(AD)中的诊断性能。
检索Ovid MEDLINE、Ovid Embase、Web of Science核心合集、Cochrane和IEEE Xplore数据库,查找从数据库建立至2024年5月24日的相关研究。我们纳入了开发用于[F]FDG PET成像的DL算法以评估在区分AD、轻度认知障碍(MCI)和正常对照(NC)时诊断性能的原始研究。采用双变量随机效应模型评估曲线下面积(AUC)。
我们确定了36项符合纳入标准的研究。其中,35项研究区分了AD与NC,合并AUC为0.98(95%CI:0.96 - 0.99)。13项研究区分了AD与MCI,合并AUC为0.95(95%CI:0.92 - 0.96)。19项研究区分了MCI与NC,合并AUC为0.94(95%CI:0.91 - 0.95)。此外,我们发现各研究间存在大量异质性,这可能部分归因于DL方法和成像方式的差异。
本系统评价和荟萃分析表明,DL辅助的[F]FDG PET成像在识别AD方面具有较高的诊断性能。研究间显著的异质性强调了未来研究纳入外部验证、使用大样本量并遵循严格指南以为临床决策提供有力支持的必要性。