Suppr超能文献

类器官与微流控技术的结合:类器官芯片的最新进展、挑战与未来

Organoids meet microfluidics: recent advancements, challenges, and future of organoids-on-chip.

作者信息

Chauhdari Talha, Zaidi Syeda Armana, Su Jilei, Ding Yongsheng

机构信息

College of Life Sciences, University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, 101408 Beijing PR China.

出版信息

In Vitro Model. 2025 Mar 5;4(1):71-88. doi: 10.1007/s44164-025-00086-7. eCollection 2025 Feb.

Abstract

Organoids are three-dimensional, miniaturized tissue-like structures derived from either stem cells or primary cells, emerging as powerful in vitro models for studying developmental biology, disease pathology, and drug discovery. These organoids more accurately mimic cell-cell interactions and complexities of human tissues compared to traditional cell cultures. However, challenges such as limited nutrient supply and biomechanical cue replication hinder their maturation and viability. Microfluidic technologies, with their ability to control fluid flow and mimic the mechanical environment of tissues, have been integrated with organoids to create organoid-on-chip models that address these limitations. These models not only improve the physiological relevance of organoids but also enable more precise investigation of disease mechanisms and therapeutic responses. By combining microfluidics and organoids, several advanced organoids-on-chip models have been developed to investigate mechanical and biochemical cues involved in disease progression. This review discusses various methods to develop organoids-on-chip and the recently established organoids-on-chip models with their advanced functions. Finally, we highlighted potential strategies to enhance the functionality of organoid models, aiming to overcome current limitations and bridge the gap between current cell culture models and clinical applications, advancing personalized medicine, and improving therapeutic testing.

摘要

类器官是源自干细胞或原代细胞的三维、小型化的组织样结构,正成为研究发育生物学、疾病病理学和药物发现的强大体外模型。与传统细胞培养相比,这些类器官能更准确地模拟细胞间相互作用以及人体组织的复杂性。然而,诸如营养供应有限和生物力学线索复制等挑战阻碍了它们的成熟和存活能力。微流控技术能够控制流体流动并模拟组织的机械环境,已与类器官相结合,创建了芯片上类器官模型,以解决这些局限性。这些模型不仅提高了类器官的生理相关性,还能更精确地研究疾病机制和治疗反应。通过将微流控技术与类器官相结合,已开发出几种先进的芯片上类器官模型,用于研究疾病进展中涉及的机械和生化线索。本文综述了开发芯片上类器官的各种方法以及最近建立的具有先进功能的芯片上类器官模型。最后,我们强调了增强类器官模型功能的潜在策略,旨在克服当前的局限性,弥合当前细胞培养模型与临床应用之间的差距,推动个性化医疗,并改善治疗测试。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验