文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于从单细胞悬浮液中自动生长和分化脑类器官的封闭式 3D 打印微流控装置。

A closed 3D printed microfluidic device for automated growth and differentiation of cerebral organoids from single-cell suspension.

机构信息

Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Brno, Czech Republic.

International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.

出版信息

Biotechnol J. 2024 Aug;19(8):e2400240. doi: 10.1002/biot.202400240.


DOI:10.1002/biot.202400240
PMID:39212189
Abstract

The development of 3D organoids has provided a valuable tool for studying human tissue and organ development in vitro. Cerebral organoids, in particular, offer a unique platform for investigating neural diseases. However, current methods for generating cerebral organoids suffer from limitations such as labor-intensive protocols and high heterogeneity among organoids. To address these challenges, we present a microfluidic device designed to automate and streamline the formation and differentiation of cerebral organoids. The device utilizes microwells with two different shapes to promote the formation of a single aggregate per well and incorporates continuous medium flow for optimal nutrient exchange. In silico simulations supported the effectiveness of the microfluidic chip in replicating cellular microenvironments. Our results demonstrate that the microfluidic chip enables uniform growth of cerebral organoids, significantly reducing the hands-on time required for maintenance. Importantly, the performance of the microfluidic system is comparable to the standard 96-well plate format even when using half the amount of culture medium, and the resulting organoids exhibit substantially developed neuroepithelial buds and cortical structures. This study highlights the potential of custom-designed microfluidic technology in improving the efficiency of cerebral organoid culture.

摘要

3D 类器官的发展为体外研究人类组织和器官发育提供了宝贵的工具。特别是脑类器官,为研究神经疾病提供了独特的平台。然而,目前生成脑类器官的方法存在一些局限性,例如劳动强度大的方案和类器官之间的高度异质性。为了解决这些挑战,我们提出了一种微流控装置,旨在自动化和简化脑类器官的形成和分化。该装置利用具有两种不同形状的微井来促进每个微井中形成单个聚集体,并结合连续介质流以实现最佳的营养交换。计算机模拟支持了微流控芯片在复制细胞微环境方面的有效性。我们的结果表明,微流控芯片能够使脑类器官均匀生长,显著减少维护所需的手工操作时间。重要的是,即使使用一半量的培养基,微流控系统的性能也可与标准的 96 孔板格式相媲美,并且所得的类器官表现出明显发育的神经上皮芽和皮质结构。这项研究强调了定制微流控技术在提高脑类器官培养效率方面的潜力。

相似文献

[1]
A closed 3D printed microfluidic device for automated growth and differentiation of cerebral organoids from single-cell suspension.

Biotechnol J. 2024-8

[2]
A Hybrid 2D-to-3D in vitro Differentiation Platform Improves Outcomes of Cerebral Cortical Organoid Generation in hiPSCs.

Curr Protoc. 2024-10

[3]
Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.

Adv Biol (Weinh). 2021-6

[4]
Engineering neurovascular organoids with 3D printed microfluidic chips.

Lab Chip. 2022-4-12

[5]
Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids.

Nat Commun. 2021-8-5

[6]
Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform.

Acta Biomater. 2020-4-1

[7]
An On-Chip Method for Long-Term Growth and Real-Time Imaging of Brain Organoids.

Curr Protoc Cell Biol. 2018-12

[8]
A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks.

Adv Healthc Mater. 2024-5

[9]
In situ generation of human brain organoids on a micropillar array.

Lab Chip. 2017-8-22

[10]
Protocol to generate a microfluidic vessels-on-chip platform using human pluripotent stem cell-derived endothelial cells.

STAR Protoc. 2024-9-20

引用本文的文献

[1]
Organoids meet microfluidics: recent advancements, challenges, and future of organoids-on-chip.

In Vitro Model. 2025-3-5

[2]
Exploring organoid and assembloid technologies: a focus on retina and brain.

Expert Rev Mol Med. 2025-3-27

[3]
Capacity and limitations of microfluidic flow to increase solute transport in three-dimensional cell cultures.

J R Soc Interface. 2025-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索