Suppr超能文献

双功能分级花状CoS纳米结构对其用于超级电容器和染料敏化太阳能电池应用的界面电荷传输动力学、磁性和电化学行为的影响。

Effect of Bi-functional Hierarchical Flower-like CoS Nanostructure on its Interfacial Charge Transport Kinetics, Magnetic and Electrochemical Behaviors for Supercapacitor and DSSC Applications.

作者信息

Ashok Kumar K, Pandurangan A, Arumugam S, Sathiskumar M

机构信息

Department of Chemistry, Anna University, Chennai, 600025, Tamil Nadu, India.

Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.

出版信息

Sci Rep. 2019 Feb 4;9(1):1228. doi: 10.1038/s41598-018-37463-0.

Abstract

Metal sulfides are of great interest for future electrode materials in supercapacitor and solar cell applications owing to their superior electrochemical activity and excellent electrical conductivity. With this scope, a binary transition metal sulfide (CoS) is prepared via one-step hydrothermal synthesis. Hexagonal phase of CoS with space group of P6/mmc(194) is confirmed by XRD analysis. Additional cubic CoS phase in the prepared sample originates the mixed valence state of Co (Co and Co) is affirmed from XPS analysis. Morphological features are visualized using HRSEM images that shows nanoflower shaped star-anise structure. Employing the prepared CoS as active electrode material, interfacial charge transport kinetics is examined by EIS-Nyquist plot. The supercapacitive performances are tested in two and three-electrode system which exhibited respective specific capacitances of 57 F/g and 348 F/g for 1 A/g. Further, the fabricated asymmetric CoS//AC supercapacitor device delivers an appreciable energy density of 15.58 Wh/kg and power density of 700.12 W/kg with excellent cyclic stability of 97.9% and Coulombic efficiency of 95% over 2000 charge-discharge cycles. In addition, dye-sensitized solar cells are fabricated with CoS counter electrode and the obtained power conversion efficiency of 5.7% is comparable with standard platinum based counter electrode (6.45%). Curie-Weiss plot confirms the transition of paramagnetic nature into ferrimagnetic behavior at 85 K and Pauli-paramagnetic nature at 20 K respectively. Temperature dependent resistivity plot affirms the metallic nature of CoS sample till 20 K and transition to semiconducting nature occurs at <20 K owing to Peierl's transition effect.

摘要

由于具有优异的电化学活性和出色的导电性,金属硫化物在超级电容器和太阳能电池应用中作为未来电极材料备受关注。基于此,通过一步水热合成法制备了二元过渡金属硫化物(CoS)。XRD分析证实所制备的CoS为六方相,空间群为P6/mmc(194)。XPS分析确定所制备样品中额外的立方CoS相源于Co的混合价态(Co²⁺和Co³⁺)。利用高分辨率扫描电子显微镜(HRSEM)图像观察到其形态特征,呈现出纳米花状的八角结构。将所制备的CoS用作活性电极材料,通过电化学阻抗谱(EIS)-奈奎斯特图研究界面电荷传输动力学。在两电极和三电极体系中测试了其超级电容性能,在1 A/g电流密度下,比电容分别为57 F/g和348 F/g。此外,所制备的不对称CoS//AC超级电容器器件具有可观的能量密度15.58 Wh/kg和功率密度700.12 W/kg,在2000次充放电循环中具有97.9%的出色循环稳定性和95%的库仑效率。此外,制备了以CoS为对电极的染料敏化太阳能电池,获得的5.7%的功率转换效率与标准铂基对电极(6.45%)相当。居里-外斯图证实分别在85 K时顺磁性质转变为亚铁磁行为,在20 K时转变为泡利顺磁性质。温度依赖电阻率图表明,由于佩尔斯跃迁效应,CoS样品在20 K之前具有金属性质,在低于20 K时转变为半导体性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b19/6361894/20d11f07144c/41598_2018_37463_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验