Suppr超能文献

基于大规模韩国人群心率变异性的阻塞性睡眠呼吸暂停分类模型。

A Classifying Model of Obstructive Sleep Apnea Based on Heart Rate Variability in a Large Korean Population.

机构信息

Seoul National University College of Medicine, Seoul, Korea.

Department of Otorhinolaryngology-Head and Neck Surgery, National Police Hospital, Seoul, Korea.

出版信息

J Korean Med Sci. 2023 Feb 20;38(7):e49. doi: 10.3346/jkms.2023.38.e49.

Abstract

BACKGROUND

The majority of patients with obstructive sleep apnea do not receive timely diagnosis and treatment because of the complexity of a diagnostic test. We aimed to predict obstructive sleep apnea based on heart rate variability, body mass index, and demographic characteristics in a large Korean population.

METHODS

Models of binary classification for predicting obstructive sleep apnea severity were constructed using 14 features including 11 heart rate variability variables, age, sex, and body mass index. Binary classification was conducted separately using apnea-hypopnea index thresholds of 5, 15, and 30. Sixty percent of the participants were randomly allocated to training and validation sets while the other forty percent were designated as the test set. Classifying models were developed and validated with 10-fold cross-validation using logistic regression, random forest, support vector machine, and multilayer perceptron algorithms.

RESULTS

A total of 792 (651 men and 141 women) subjects were included. The mean age, body mass index, and apnea-hypopnea index score were 55.1 years, 25.9 kg/m², and 22.9, respectively. The sensitivity of the best performing algorithm was 73.6%, 70.7%, and 78.4% when the apnea-hypopnea index threshold criterion was 5, 10, and 15, respectively. The prediction performances of the best classifiers at apnea-hypopnea indices of 5, 15, and 30 were as follows: accuracy, 72.2%, 70.0%, and 70.3%; specificity, 64.6%, 69.2%, and 67.9%; area under the receiver operating characteristic curve, 77.2%, 73.5%, and 80.1%, respectively. Overall, the logistic regression model using the apnea-hypopnea index criterion of 30 showed the best classifying performance among all models.

CONCLUSION

Obstructive sleep apnea was fairly predicted by using heart rate variability, body mass index, and demographic characteristics in a large Korean population. Prescreening and continuous treatment monitoring of obstructive sleep apnea may be possible simply by measuring heart rate variability.

摘要

背景

由于诊断测试的复杂性,大多数阻塞性睡眠呼吸暂停患者未能得到及时诊断和治疗。我们旨在通过心率变异性、体重指数和人口统计学特征来预测韩国大型人群中的阻塞性睡眠呼吸暂停。

方法

使用包括 11 个心率变异性变量、年龄、性别和体重指数在内的 14 个特征构建了用于预测阻塞性睡眠呼吸暂停严重程度的二分类模型。使用呼吸暂停低通气指数阈值为 5、15 和 30 分别进行二分类。60%的参与者被随机分配到训练集和验证集,而其余 40%被指定为测试集。使用逻辑回归、随机森林、支持向量机和多层感知器算法通过 10 折交叉验证开发和验证分类模型。

结果

共纳入 792 名(651 名男性和 141 名女性)受试者。平均年龄、体重指数和呼吸暂停低通气指数评分为 55.1 岁、25.9kg/m²和 22.9。当呼吸暂停低通气指数阈值标准为 5、10 和 15 时,最佳算法的灵敏度分别为 73.6%、70.7%和 78.4%。在呼吸暂停低通气指数为 5、15 和 30 时,最佳分类器的预测性能如下:准确性为 72.2%、70.0%和 70.3%;特异性为 64.6%、69.2%和 67.9%;接受者操作特征曲线下面积为 77.2%、73.5%和 80.1%。总体而言,使用呼吸暂停低通气指数标准为 30 的逻辑回归模型在所有模型中表现出最佳的分类性能。

结论

在韩国大型人群中,使用心率变异性、体重指数和人口统计学特征可以相当准确地预测阻塞性睡眠呼吸暂停。通过简单测量心率变异性,可能可以对阻塞性睡眠呼吸暂停进行预筛查和持续治疗监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a9f/9941018/1450fc0017c7/jkms-38-e49-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验