Lee Juhwan, Hu Tao, Williams Michelle C, Hoori Ammar, Wu Hao, Kim Justin N, Newby David E, Gilkeson Robert, Rajagopalan Sanjay, Wilson David L
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
Front Cardiovasc Med. 2025 Mar 14;12:1543816. doi: 10.3389/fcvm.2025.1543816. eCollection 2025.
Non-contrast CT calcium scoring (CTCS) exams have been widely used to assess coronary artery disease. However, their clinical applications in predicting coronary arterial remodeling remain unknown. This study aimed to develop a novel machine learning model to predict positive remodeling (PR) from CTCS scans and evaluate its clinical value in predicting major adverse cardiovascular events (MACE).
We analyzed data from 1,324 patients who underwent both CTCS and CT angiography. PR was defined as an outer vessel diameter at least 10% greater than the average diameter of the segments immediately proximal and distal to the plaque. We utilized a total of 246 features, including 23 clinical features, 12 Agatston score-derived features, and 211 epicardial fat-omics features to predict PR. Feature selection was performed using Elastic Net logistic regression, and the selected features were used to train a CatBoost machine learning model. Classification performance was evaluated using 1,000 repetitions of five-fold cross-validation and survival analyses, comparing actual and predicted PR in the context of predicting MACE.
PR was identified in 429 patients (32.4%). Using Elastic Net, we identified the top 13 features, including four clinical features, three Agatston score-derived features, and six fat-omics features. Our method demonstrated excellent classification performance for predicting PR, achieving a sensitivity of 80.3 ± 1.7%, a specificity of 89.7 ± 1.7%, and accuracy of 81.9 ± 2.5%. The Agatston-score-derived and fat-omics features provided additional benefits, improving classification performance. Furthermore, our model effectively predicted MACE, with a hazard ratio (HR) of 4.5 [95% confidence interval (CI): 3.2-6.4; C-index: 0.578; < 0.00001] in the training set and an HR of 3.2 (95% CI: 2.5-4.0; C-index: 0.647; < 0.00001) in the external validation set.
We developed an innovative machine learning model to predict coronary arterial remodeling from epicardial fat and calcification features from low-cost/no-cost screening CTCS scans. Our results suggest that vast number of CTCS scans can support more informed clinical decision-making and potentially reduce the need for invasive and costly testing for low-risk patients.
非增强CT钙评分(CTCS)检查已被广泛用于评估冠状动脉疾病。然而,其在预测冠状动脉重塑方面的临床应用尚不清楚。本研究旨在开发一种新型机器学习模型,以根据CTCS扫描预测阳性重塑(PR),并评估其在预测主要不良心血管事件(MACE)方面的临床价值。
我们分析了1324例同时接受CTCS和CT血管造影检查的患者的数据。PR定义为血管外径比斑块近端和远端节段的平均直径至少大10%。我们总共利用了246个特征,包括23个临床特征、12个基于阿加斯顿评分的特征和211个心外膜脂肪组学特征来预测PR。使用弹性网络逻辑回归进行特征选择,并将所选特征用于训练CatBoost机器学习模型。使用1000次五折交叉验证和生存分析评估分类性能,在预测MACE的背景下比较实际和预测的PR。
429例患者(32.4%)被确定为PR。使用弹性网络,我们确定了前13个特征,包括4个临床特征、3个基于阿加斯顿评分的特征和6个脂肪组学特征。我们的方法在预测PR方面表现出优异的分类性能,敏感性为80.3±1.7%,特异性为89.7±1.7%,准确性为81.9±2.5%。基于阿加斯顿评分的特征和脂肪组学特征提供了额外的益处,提高了分类性能。此外,我们的模型有效地预测了MACE,训练集中的风险比(HR)为4.5[95%置信区间(CI):3.2-6.4;C指数:0.578;P<0.00001],外部验证集中的HR为3.2(95%CI:2.5-4.0;C指数:0.647;P<0.00001)。
我们开发了一种创新的机器学习模型,可根据低成本/无成本筛查CTCS扫描的心外膜脂肪和钙化特征预测冠状动脉重塑。我们的结果表明,大量的CTCS扫描可以支持更明智的临床决策,并可能减少低风险患者进行侵入性和昂贵检查的需求。