Nagaraja Sridevi, Rubio Jose E, Tong Junfei, Sundaramurthy Aravind, Pant Anup, Owen Meredith K, Samaan Michael A, Noehren Brian, Reifman Jaques
Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, Defense Health Agency Research and Development, Medical Research and Development Command, Fort Detrick, MD, United States.
The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.
Front Bioeng Biotechnol. 2025 Mar 14;13:1533001. doi: 10.3389/fbioe.2025.1533001. eCollection 2025.
Active lower-body exoskeleton devices can decrease the energy requirement of the human body by providing mechanical assistance to lower-body muscles. However, they also alter gait kinematics and kinetics, and it is not well understood whether such alterations are detrimental or beneficial to the human body. In this pilot study, we investigated the impact of walking with an ankle exoskeleton device on the biomechanics of men while carrying a heavy load. We collected computed tomography images and motion-capture data for five young, healthy men who walked 5 km (∼60 min) with a 22.7-kg load, with and without an active ankle exoskeleton (the ExoBoot EB60). We developed personalized musculoskeletal models and calculated the joint kinematics and kinetics for each participant under each walking condition. Without the ExoBoot, at 5 km compared to 0 km, on average, the peak trunk flexion angle increased by ∼35% and the stride length increased by ∼3.5%. In contrast, with the ExoBoot, the magnitude of the corresponding increases was smaller (∼16% and ∼2%, respectively). After the 5-km walk, compared to walking without the ExoBoot, its use considerably altered hip-related biomechanical parameters, e.g., it increased hip abduction angle by ∼17%, increased hip flexion moment by ∼3.5%, and decreased hip adduction moment by ∼19%. Finally, irrespective of distance, ExoBoot use significantly increased the stance duration and peak ankle plantarflexion angle ( < 0.001). Overall, the use of the ExoBoot induced beneficial alterations in stride length and trunk-, ankle-, and hip-related parameters for men walking with load carriage. The quantitative analysis provided by this pilot study should help guide future investigations and inform the development of standards for safe and effective use of emerging exoskeleton technologies.
主动式下肢外骨骼装置可以通过为下肢肌肉提供机械辅助来降低人体的能量需求。然而,它们也会改变步态运动学和动力学,目前尚不清楚这种改变对人体是有害还是有益。在这项初步研究中,我们调查了在负重情况下使用脚踝外骨骼装置行走对男性生物力学的影响。我们收集了五名年轻健康男性在背负22.7千克重物行走5千米(约60分钟)时的计算机断层扫描图像和运动捕捉数据,行走过程中分别使用和不使用主动式脚踝外骨骼(ExoBoot EB60)。我们开发了个性化的肌肉骨骼模型,并计算了每个参与者在每种行走条件下的关节运动学和动力学。不使用ExoBoot时,与行走0千米相比,行走5千米时,平均而言,躯干峰值屈曲角度增加了约35%,步幅增加了约3.5%。相比之下,使用ExoBoot时,相应增加的幅度较小(分别约为16%和2%)。在5千米行走后,与不使用ExoBoot行走相比,使用ExoBoot显著改变了与髋关节相关的生物力学参数,例如,髋关节外展角度增加了约17%,髋关节屈曲力矩增加了约3.5%,髋关节内收力矩减少了约19%。最后,无论行走距离如何,使用ExoBoot均显著增加了站立时间和踝关节峰值跖屈角度(P<0.001)。总体而言,对于负重行走的男性,使用ExoBoot在步幅以及与躯干、脚踝和髋关节相关的参数方面产生了有益的改变。这项初步研究提供的定量分析应有助于指导未来的研究,并为新兴外骨骼技术的安全有效使用标准的制定提供参考。