Suppr超能文献

基于卷积神经网络的剂量预测在前列腺癌放射治疗中对直肠晚期毒性的风险评估

Risk Estimation of Late Rectal Toxicity Using a Convolutional Neural Network-based Dose Prediction in Prostate Cancer Radiation Therapy.

作者信息

Takano Seiya, Tomita Natsuo, Takaoka Taiki, Ukai Machiko, Matsuura Akane, Oguri Masanosuke, Kita Nozomi, Torii Akira, Niwa Masanari, Okazaki Dai, Yasui Takahiro, Hiwatashi Akio

机构信息

Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan.

Department of Urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan.

出版信息

Adv Radiat Oncol. 2025 Feb 15;10(4):101739. doi: 10.1016/j.adro.2025.101739. eCollection 2025 Apr.

Abstract

PURPOSE

The present study investigated the feasibility of our automatic plan generation model based on a convolutional neural network (CNN) to estimate the baseline risk of grade ≥2 late rectal bleeding (G2-LRB) in volumetric modulated arc therapy for prostate cancer.

METHODS AND MATERIALS

We built the 2-dimensional U-net model to predict dose distributions using the planning computed tomography and organs at risk masks as inputs. Seventy-five volumetric modulated arc therapy plans of prostate cancer, which were delivered at 74.8 Gy in 34 fractions with a uniform planning goal, were included: 60 for training and 5-fold cross-validation, and the remaining 15 for testing. Isodose volume dice similarity coefficient, dose-volume histogram, and normal tissue complication probability (NTCP) metrics between planned and CNN-predicted dose distributions were calculated. The primary endpoint was the goodness-of-fit, expressed as a coefficient of determination ( ) value, in predicting the percentage of G2-LRB-Lyman-Kutcher-Burman-NTCP.

RESULTS

In 15 test cases, 2-dimensional U-net predicted dose distributions with a mean isodose volume dice similarity coefficient value of 0.90 within the high-dose region (doses ≥ 50 Gy). Rectum V, V, and V were accurately predicted ( = 0.73, 0.82, and 0.87, respectively). Strong correlations were observed between planned and predicted G2-LRB-Lyman-Kutcher-Burman-NTCP ( = 0.80, < .001), with a small percent mean absolute error (mean ± 1 standard deviation, 1.24% ± 1.42%).

CONCLUSIONS

A risk estimation of LRB using CNN-based automatic plan generation from anatomic information was feasible. These results will contribute to the development of a decision support system that identifies priority cases for preradiation therapy interventions, such as hydrogel spacer implantation.

摘要

目的

本研究探讨基于卷积神经网络(CNN)的自动计划生成模型在容积调强弧形放疗治疗前列腺癌时评估≥2级晚期直肠出血(G2-LRB)基线风险的可行性。

方法和材料

我们构建了二维U-net模型,以计划计算机断层扫描和危及器官掩码作为输入来预测剂量分布。纳入了75个前列腺癌容积调强弧形放疗计划,这些计划以均匀的计划目标在34次分割中给予74.8 Gy:60个用于训练和5折交叉验证,其余15个用于测试。计算计划剂量分布与CNN预测剂量分布之间的等剂量体积骰子相似系数、剂量体积直方图和正常组织并发症概率(NTCP)指标。主要终点是在预测G2-LRB-Lyman-Kutcher-Burman-NTCP百分比时的拟合优度,以决定系数( )值表示。

结果

在15个测试病例中,二维U-net在高剂量区域(剂量≥50 Gy)预测的剂量分布的平均等剂量体积骰子相似系数值为0.90。直肠V、V和V被准确预测(分别为 = 0.73、0.82和0.87)。在计划的和预测的G2-LRB-Lyman-Kutcher-Burman-NTCP之间观察到强相关性( = 0.80, <.001),平均绝对误差百分比小(平均值±1标准差,1.24%±1.42%)。

结论

利用基于CNN的自动计划从解剖信息中对LRB进行风险估计是可行 的。这些结果将有助于开发一种决策支持系统,该系统可以识别放射治疗前干预(如水凝胶间隔物植入)的优先病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ddc/11950957/9a1d492fe21a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验