Wang Wenshen, Han Zheng, Aafreen Safiya, Zivko Cristina, Gololobova Olesia, Wei Zhiliang, Cotin Geoffrey, Felder-Flesc Delphine, Mahairaki Vasiliki, Witwer Kenneth W, Bulte Jeff W M, Weiss Robert G, Liu Guanshu
F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA.
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
bioRxiv. 2025 Mar 11:2025.03.02.641040. doi: 10.1101/2025.03.02.641040.
Stem cell-derived extracellular vesicles (EVs) offer a promising cell-free approach for cardiovascular regenerative medicine. In this study, we developed magnetically labeled induced pluripotent stem cell-derived EVs (magneto-iPSC-EVs) encapsulated with superparamagnetic iron oxide (SPIO) nanoparticles for image-guided regenerative treatment of myocardial infarction, in which EVs that can be detected by both magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). iPSC-EVs were isolated, characterized per MISEV2023 guidelines, and loaded with SuperSPIO20 nanoparticles using optimized electroporation conditions (300 V, 2 × 10 ms pulses), achieving a high loading efficiency of 1.77 ng Fe/10 EVs. In vitro results show that magneto-iPSC-EVs can be sensitively detected by MPI and MRI, with a detectability of approximately 10 EVs. In a mouse myocardial ischemia-reperfusion model, intramyocardially injected magneto-iPSC-EVs (2 × 10) were imaged non-invasively by in vivo MPI for 7 days and ex vivo MRI, with the presence of magneto-iPSC-EVs confirmed by Prussian blue staining. Therapeutically, both native and magneto- iPSC-EVs significantly improved cardiac function, with a 37.3% increase in left ventricular ejection fraction and 61.0% reduction in scar size. This study highlights the potential of magneto-iPSC-EVs as a cell-free approach for cardiovascular regenerative medicine, offering both non-invasive imaging capabilities and therapeutic benefits for myocardial repair.
干细胞衍生的细胞外囊泡(EVs)为心血管再生医学提供了一种有前景的无细胞方法。在本研究中,我们开发了用超顺磁性氧化铁(SPIO)纳米颗粒包裹的磁性标记诱导多能干细胞衍生的EVs(磁诱导多能干细胞-EVs),用于心肌梗死的图像引导再生治疗,其中EVs可通过磁共振成像(MRI)和磁粒子成像(MPI)检测。诱导多能干细胞-EVs被分离出来,按照MISEV2023指南进行表征,并使用优化的电穿孔条件(300 V,2×10 ms脉冲)加载SuperSPIO20纳米颗粒,实现了1.77 ng Fe/10个EVs的高加载效率。体外结果表明,磁诱导多能干细胞-EVs可被MPI和MRI灵敏检测,检测限约为10个EVs。在小鼠心肌缺血再灌注模型中,通过体内MPI对心肌内注射的磁诱导多能干细胞-EVs(2×10)进行了7天的无创成像,并进行了离体MRI,普鲁士蓝染色证实了磁诱导多能干细胞-EVs的存在。在治疗方面,天然和磁诱导多能干细胞-EVs均显著改善了心脏功能,左心室射血分数增加了37.3%,疤痕大小减少了61.0%。本研究突出了磁诱导多能干细胞-EVs作为心血管再生医学无细胞方法的潜力,为心肌修复提供了无创成像能力和治疗益处。