Huot Marian, Wang Dianzhuo, Liu Jiacheng, Shakhnovich Eugene
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA.
Laboratory of Physics of the Ecole Normale Supérieure, CNRS UMR 8023 and PSL Research, Sorbonne Université.
bioRxiv. 2025 Mar 13:2025.03.12.642881. doi: 10.1101/2025.03.12.642881.
The early detection of high-fitness viral variants is critical for pandemic response, yet limited experimental resources at the onset of variant emergence hinder effective identification. To address this, we introduce an active learning framework that integrates protein language model ESM3, Gaussian process with uncertainty estimation, and a biophysical model to predict the fitness of novel variants in a few-shot learning setting. By benchmarking on past SARS-CoV-2 data, we demonstrate that our methods accelerates the identification of high-fitness variants by up to fivefold compared to random sampling while requiring experimental characterization of fewer than 1% of possible variants. We also demonstrate that our framework benchmarked on deep mutational scans effectively identifies sites that are frequently mutated during natural viral evolution with a predictive advantage of up to two years compared to baseline strategies, particularly those enabling antibody escape while preserving ACE2 binding. Through systematic analysis of different acquisition strategies, we show that incorporating uncertainty in variant selection enables broader exploration of the sequence landscape, leading to the discovery of evolutionarily distant but potentially dangerous variants. Our results suggest that this framework could serve as an effective early warning system for identifying concerning SARS-CoV-2 variants and potentially emerging viruses with pandemic potential before they achieve widespread circulation.
高适应性病毒变体的早期检测对于应对大流行至关重要,但在变体出现之初有限的实验资源阻碍了有效识别。为了解决这一问题,我们引入了一个主动学习框架,该框架整合了蛋白质语言模型ESM3、带不确定性估计的高斯过程和一个生物物理模型,以在少样本学习设置中预测新型变体的适应性。通过对过去的SARS-CoV-2数据进行基准测试,我们证明,与随机抽样相比,我们的方法将高适应性变体的识别速度提高了五倍,同时所需的可能变体实验表征不到1%。我们还证明,我们基于深度突变扫描进行基准测试的框架能够有效地识别自然病毒进化过程中频繁突变的位点,与基线策略相比,预测优势高达两年,特别是那些在保留ACE2结合的同时实现抗体逃逸的位点。通过对不同获取策略的系统分析,我们表明在变体选择中纳入不确定性能够更广泛地探索序列景观,从而发现进化上距离较远但可能危险的变体。我们的结果表明,该框架可作为一种有效的早期预警系统,用于在具有大流行潜力的SARS-CoV-2变体和潜在新兴病毒广泛传播之前识别它们。