Omari Derar, Sallam Assayed, Rashid Iyad, Assaf Shereen M, Al-Akayleh Faisal, Al-Sou Od Khaldoun A
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
TQ Pharma, Amman, Jordan.
ADMET DMPK. 2025 Jan 19;13(1):2569. doi: 10.5599/admet.2569. eCollection 2025.
Modafinil, a wakefulness-promoting agent, is primarily used to treat excessive daytime sleepiness associated with narcolepsy and fatigue. As a BCS class II drug, modafinil exhibits low solubility and high permeability, with its crystalline structure significantly impacting dissolution, bioavailability, and compressibility. This study explores the use of microwave energy to alter the crystalline structure of modafinil in the presence of Gelucire 48/16, aiming to improve its pharmaceutical properties.
Modafinil was treated with microwave energy to form complexes with Gelucire 48/16, and the resulting formulations were compared to hot-melt complexes and physical mixtures. The structural and thermal properties of the complexes were characterized using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy. Compressibility and compactibility were evaluated through Kawakita model analysis and response surface methodology). The effect of microwaves on molecular interactions was further investigated using molecular modeling.
XRPD analysis revealed distinct crystalline patterns for microwave and hot-melt complexes compared to physical mixtures, with increased amorphousness observed through crystallinity, relative crystallinity, and relative intensity parameters. DSC thermograms indicated a reduction in melting endotherms and heat flow, suggesting structural changes due to complex formation. Compressibility and compactibility studies demonstrated optimal performance at low Gelucire content, with microwave-treated complexes exhibiting superior properties to untreated mixtures. Molecular modeling confirmed dipole-dipole interactions between modafinil and the hydrophilic portion of Gelucire.
The study demonstrates that microwave energy effectively alters the crystalline structure of modafinil in the presence of Gelucire 48/16, enhancing its amorphousness, compressibility, and compatibility. These findings highlight the potential of microwave-assisted complexation as a novel approach to improve the pharmaceutical performance of BCS Class II drugs like modafinil.
莫达非尼是一种促醒药物,主要用于治疗与发作性睡病相关的日间过度嗜睡和疲劳。作为一种BCS II类药物,莫达非尼具有低溶解度和高渗透性,其晶体结构对溶解、生物利用度和可压缩性有显著影响。本研究探索在Gelucire 48/16存在的情况下,利用微波能量改变莫达非尼的晶体结构,以改善其药学性质。
用微波能量处理莫达非尼,使其与Gelucire 48/16形成复合物,并将所得制剂与热熔复合物和物理混合物进行比较。使用X射线粉末衍射(XRPD)、差示扫描量热法(DSC)和傅里叶变换红外光谱对复合物的结构和热性质进行表征。通过河合模型分析和响应面方法评估可压缩性和成型性。使用分子建模进一步研究微波对分子相互作用的影响。
XRPD分析显示,与物理混合物相比,微波复合物和热熔复合物具有明显不同的晶体模式,通过结晶度、相对结晶度和相对强度参数观察到无定形度增加。DSC热谱图表明熔融吸热和热流减少,表明由于复合物形成导致结构变化。可压缩性和成型性研究表明,在低Gelucire含量下性能最佳,微波处理的复合物表现出优于未处理混合物的性能。分子建模证实了莫达非尼与Gelucire亲水部分之间的偶极-偶极相互作用。
该研究表明,在Gelucire 48/16存在的情况下,微波能量可有效改变莫达非尼的晶体结构,提高其无定形度、可压缩性和相容性。这些发现突出了微波辅助络合作为一种改善莫达非尼等BCS II类药物药学性能的新方法的潜力。