Suppr超能文献

预测持续注意力的功能性脑网络并非特定于感知模态。

Functional brain networks predicting sustained attention are not specific to perceptual modality.

作者信息

Corriveau Anna, Ke Jin, Terashima Hiroki, Kondo Hirohito M, Rosenberg Monica D

机构信息

Department of Psychology, The University of Chicago.

NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation.

出版信息

Netw Neurosci. 2025 Mar 20;9(1):303-325. doi: 10.1162/netn_a_00430. eCollection 2025.

Abstract

Sustained attention is essential for daily life and can be directed to information from different perceptual modalities, including audition and vision. Recently, cognitive neuroscience has aimed to identify neural predictors of behavior that generalize across datasets. Prior work has shown strong generalization of models trained to predict individual differences in sustained attention performance from patterns of fMRI functional connectivity. However, it is an open question whether predictions of sustained attention are specific to the perceptual modality in which they are trained. In the current study, we test whether connectome-based models predict performance on attention tasks performed in different modalities. We show first that a predefined network trained to predict adults' sustained attention performance generalizes to predict sustained attention performance in three independent datasets ( = 29, = 60, = 17). Next, we train new network models to predict performance on visual and auditory attention tasks separately. We find that functional networks are largely modality general, with both model-unique and shared model features predicting sustained attention performance in independent datasets regardless of task modality. Results support the supposition that visual and auditory sustained attention rely on shared neural mechanisms and demonstrate robust generalizability of whole-brain functional network models of sustained attention.

摘要

持续注意力对日常生活至关重要,并且可以指向来自不同感知模态的信息,包括听觉和视觉。最近,认知神经科学旨在识别跨数据集具有普遍性的行为的神经预测指标。先前的研究表明,训练用于从功能磁共振成像(fMRI)功能连接模式预测持续注意力表现个体差异的模型具有很强的普遍性。然而,持续注意力的预测是否特定于其训练的感知模态仍是一个悬而未决的问题。在当前研究中,我们测试基于连接组的模型是否能预测在不同模态下执行的注意力任务的表现。我们首先表明,一个经过训练用于预测成年人持续注意力表现的预定义网络能够推广,以预测三个独立数据集中的持续注意力表现(n1 = 29,n2 = 60,n3 = 17)。接下来,我们分别训练新的网络模型来预测视觉和听觉注意力任务的表现。我们发现功能网络在很大程度上是模态通用的,无论任务模态如何,模型独特特征和共享模型特征都能在独立数据集中预测持续注意力表现。结果支持视觉和听觉持续注意力依赖于共享神经机制的假设,并证明了持续注意力全脑功能网络模型具有强大的普遍性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f8e/11949588/cd892976bf8b/netn-9-1-303-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验