Department of Psychology, Yale University, New Haven, Connecticut.
Department of Psychology, University of Chicago, Chicago, Illinois.
Brain Behav. 2019 Aug;9(8):e01346. doi: 10.1002/brb3.1346. Epub 2019 Jul 9.
INTRODUCTION: Connectome-based predictive modeling (CPM) is a recently developed machine-learning-based framework to predict individual differences in behavior from functional brain connectivity (FC). In these models, FC was operationalized as Pearson's correlation between brain regions' fMRI time courses. However, Pearson's correlation is limited since it only captures linear relationships. We developed a more generalized metric of FC based on information flow. This measure represents FC by abstracting the brain as a flow network of nodes that send bits of information to each other, where bits are quantified through an information theory statistic called transfer entropy. METHODS: With a sample of individuals performing a sustained attention task and resting during functional magnetic resonance imaging (fMRI) (n = 25), we use the CPM framework to build machine-learning models that predict attention from FC patterns measured with information flow. Models trained on n - 1 participants' task-based patterns were applied to an unseen individual's resting-state pattern to predict task performance. For further validation, we applied our model to two independent datasets that included resting-state fMRI data and a measure of attention (Attention Network Task performance [n = 41] and stop-signal task performance [n = 72]). RESULTS: Our model significantly predicted individual differences in attention task performance across three different datasets. CONCLUSIONS: Information flow may be a useful complement to Pearson's correlation as a measure of FC because of its advantages for nonlinear analysis and network structure characterization.
简介:基于连接组学的预测建模(CPM)是一种最近开发的基于机器学习的框架,可从功能脑连接(FC)预测个体行为差异。在这些模型中,FC 被操作化为大脑区域 fMRI 时间序列之间的皮尔逊相关。然而,皮尔逊相关是有限的,因为它只捕获线性关系。我们开发了一种基于信息流的更通用的 FC 度量方法。该度量方法通过将大脑抽象为一个节点的信息流网络来表示 FC,其中节点相互发送信息位,位通过称为转移熵的信息论统计量进行量化。
方法:我们使用了一个由 25 名个体在进行持续注意力任务和静息状态 fMRI 期间组成的样本,使用 CPM 框架构建了机器学习模型,这些模型使用信息流测量的 FC 模式预测注意力。在 n-1 名参与者的任务模式上训练的模型被应用于一个未见过的个体的静息状态模式,以预测任务表现。为了进一步验证,我们将我们的模型应用于两个包含静息态 fMRI 数据和注意力测量的独立数据集(注意网络任务表现[n=41]和停止信号任务表现[n=72])。
结果:我们的模型在三个不同的数据集上显著预测了注意力任务表现的个体差异。
结论:信息流可能是皮尔逊相关的有用补充,作为 FC 的度量方法,因为它具有非线性分析和网络结构特征化的优势。
Hum Brain Mapp. 2024-6-1
Neuroimage. 2022-4-1
Neuroimage. 2021-10-1
J Cogn Neurosci. 2017-10-17
Neuroimage. 2021-12-1
Nat Hum Behav. 2023-8
Int J Psychophysiol. 2022-2
Front Neurosci. 2021-10-22
Dev Cogn Neurosci. 2020-12
Hum Brain Mapp. 2020-9
J Cogn Neurosci. 2017-10-17
J Neurosci Methods. 2017-6-1
J Neurosci. 2016-9-14
Nat Neurosci. 2016-1