文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于测量功能连接和预测行为的信息网络流量方法。

An information network flow approach for measuring functional connectivity and predicting behavior.

机构信息

Department of Psychology, Yale University, New Haven, Connecticut.

Department of Psychology, University of Chicago, Chicago, Illinois.

出版信息

Brain Behav. 2019 Aug;9(8):e01346. doi: 10.1002/brb3.1346. Epub 2019 Jul 9.


DOI:10.1002/brb3.1346
PMID:31286688
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6710195/
Abstract

INTRODUCTION: Connectome-based predictive modeling (CPM) is a recently developed machine-learning-based framework to predict individual differences in behavior from functional brain connectivity (FC). In these models, FC was operationalized as Pearson's correlation between brain regions' fMRI time courses. However, Pearson's correlation is limited since it only captures linear relationships. We developed a more generalized metric of FC based on information flow. This measure represents FC by abstracting the brain as a flow network of nodes that send bits of information to each other, where bits are quantified through an information theory statistic called transfer entropy. METHODS: With a sample of individuals performing a sustained attention task and resting during functional magnetic resonance imaging (fMRI) (n = 25), we use the CPM framework to build machine-learning models that predict attention from FC patterns measured with information flow. Models trained on n - 1 participants' task-based patterns were applied to an unseen individual's resting-state pattern to predict task performance. For further validation, we applied our model to two independent datasets that included resting-state fMRI data and a measure of attention (Attention Network Task performance [n = 41] and stop-signal task performance [n = 72]). RESULTS: Our model significantly predicted individual differences in attention task performance across three different datasets. CONCLUSIONS: Information flow may be a useful complement to Pearson's correlation as a measure of FC because of its advantages for nonlinear analysis and network structure characterization.

摘要

简介:基于连接组学的预测建模(CPM)是一种最近开发的基于机器学习的框架,可从功能脑连接(FC)预测个体行为差异。在这些模型中,FC 被操作化为大脑区域 fMRI 时间序列之间的皮尔逊相关。然而,皮尔逊相关是有限的,因为它只捕获线性关系。我们开发了一种基于信息流的更通用的 FC 度量方法。该度量方法通过将大脑抽象为一个节点的信息流网络来表示 FC,其中节点相互发送信息位,位通过称为转移熵的信息论统计量进行量化。

方法:我们使用了一个由 25 名个体在进行持续注意力任务和静息状态 fMRI 期间组成的样本,使用 CPM 框架构建了机器学习模型,这些模型使用信息流测量的 FC 模式预测注意力。在 n-1 名参与者的任务模式上训练的模型被应用于一个未见过的个体的静息状态模式,以预测任务表现。为了进一步验证,我们将我们的模型应用于两个包含静息态 fMRI 数据和注意力测量的独立数据集(注意网络任务表现[n=41]和停止信号任务表现[n=72])。

结果:我们的模型在三个不同的数据集上显著预测了注意力任务表现的个体差异。

结论:信息流可能是皮尔逊相关的有用补充,作为 FC 的度量方法,因为它具有非线性分析和网络结构特征化的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/3215e15fbea7/BRB3-9-e01346-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/9046d487e4e6/BRB3-9-e01346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/38f8ced8b5b7/BRB3-9-e01346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/4176f9586c0d/BRB3-9-e01346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/116df9c0c5e8/BRB3-9-e01346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/a6461b37bd19/BRB3-9-e01346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/a961b4b695aa/BRB3-9-e01346-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/1a10c3e8581a/BRB3-9-e01346-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/e8359825b528/BRB3-9-e01346-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/3215e15fbea7/BRB3-9-e01346-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/9046d487e4e6/BRB3-9-e01346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/38f8ced8b5b7/BRB3-9-e01346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/4176f9586c0d/BRB3-9-e01346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/116df9c0c5e8/BRB3-9-e01346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/a6461b37bd19/BRB3-9-e01346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/a961b4b695aa/BRB3-9-e01346-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/1a10c3e8581a/BRB3-9-e01346-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/e8359825b528/BRB3-9-e01346-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980b/6710195/3215e15fbea7/BRB3-9-e01346-g009.jpg

相似文献

[1]
An information network flow approach for measuring functional connectivity and predicting behavior.

Brain Behav. 2019-7-9

[2]
Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.

Neuroimage. 2017-11-6

[3]
Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies.

Neuroimage. 2018-12-3

[4]
Network and state specificity in connectivity-based predictions of individual behavior.

Hum Brain Mapp. 2024-6-1

[5]
A functional connectivity-based neuromarker of sustained attention generalizes to predict recall in a reading task.

Neuroimage. 2017-10-12

[6]
Predicting individual traits from unperformed tasks.

Neuroimage. 2022-4-1

[7]
Distance Correlation-Based Brain Functional Connectivity Estimation and Non-Convex Multi-Task Learning for Developmental fMRI Studies.

IEEE Trans Biomed Eng. 2022-10

[8]
Tracking spatial dynamics of functional connectivity during a task.

Neuroimage. 2021-10-1

[9]
Connectome-based Models Predict Separable Components of Attention in Novel Individuals.

J Cogn Neurosci. 2017-10-17

[10]
NBS-Predict: A prediction-based extension of the network-based statistic.

Neuroimage. 2021-12-1

引用本文的文献

[1]
Drinking severity mediates the relationship between hypothalamic connectivity and rule-breaking/intrusive behavior differently in young women and men: an exploratory study.

Quant Imaging Med Surg. 2024-9-1

[2]
The challenges and prospects of brain-based prediction of behaviour.

Nat Hum Behav. 2023-8

[3]
Multivariate Gaussian Copula Mutual Information to Estimate Functional Connectivity with Less Random Architecture.

Entropy (Basel). 2022-4-29

[4]
Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration.

Int J Psychophysiol. 2022-2

[5]
Revealing the Relevant Spatiotemporal Scale Underlying Whole-Brain Dynamics.

Front Neurosci. 2021-10-22

[6]
Between-module functional connectivity of the salient ventral attention network and dorsal attention network is associated with motor inhibition.

PLoS One. 2020

[7]
Behavioral and brain signatures of substance use vulnerability in childhood.

Dev Cogn Neurosci. 2020-12

[8]
Network connectivity predicts language processing in healthy adults.

Hum Brain Mapp. 2020-9

本文引用的文献

[1]
Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.

Neuroimage. 2017-11-6

[2]
Connectome-based Models Predict Separable Components of Attention in Novel Individuals.

J Cogn Neurosci. 2017-10-17

[3]
A functional connectivity-based neuromarker of sustained attention generalizes to predict recall in a reading task.

Neuroimage. 2017-10-12

[4]
Shannon entropy of brain functional complex networks under the influence of the psychedelic Ayahuasca.

Sci Rep. 2017-8-7

[5]
An information theory framework for dynamic functional domain connectivity.

J Neurosci Methods. 2017-6-1

[6]
Using connectome-based predictive modeling to predict individual behavior from brain connectivity.

Nat Protoc. 2017-2-9

[7]
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.

J Neurosci. 2016-9-14

[8]
A neuromarker of sustained attention from whole-brain functional connectivity.

Nat Neurosci. 2016-1

[9]
Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

Nat Neurosci. 2015-11

[10]
A Network Flow-based Analysis of Cognitive Reserve in Normal Ageing and Alzheimer's Disease.

Sci Rep. 2015-5-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索