Rony Moustaq Karim Khan, Das Dipak Chandra, Khatun Most Tahmina, Ferdousi Silvia, Akter Mosammat Ruma, Khatun Mst Amena, Begum Most Hasina, Khalil Md Ibrahim, Parvin Mst Rina, Alrazeeni Daifallah M, Akter Fazila
Miyan Research Institute, International University of Business Agriculture and Technology, Dhaka, Bangladesh.
Master of Social Science in Sociology & Anthropology, Shanto-Mariam University of Creative Technology, Dhaka, Bangladesh.
Digit Health. 2025 Mar 28;11:20552076251330528. doi: 10.1177/20552076251330528. eCollection 2025 Jan-Dec.
Artificial Intelligence (AI) has demonstrated significant potential in transforming psychiatric care by enhancing diagnostic accuracy and therapeutic interventions. Psychiatry faces challenges like overlapping symptoms, subjective diagnostic methods, and personalized treatment requirements. AI, with its advanced data-processing capabilities, offers innovative solutions to these complexities.
This study systematically reviewed and meta-analyzed the existing literature to evaluate AI's diagnostic accuracy and therapeutic efficacy in psychiatric care, focusing on various psychiatric disorders and AI technologies.
Adhering to PRISMA guidelines, the study included a comprehensive literature search across multiple databases. Empirical studies investigating AI applications in psychiatry, such as machine learning (ML), deep learning (DL), and hybrid models, were selected based on predefined inclusion criteria. The outcomes of interest were diagnostic accuracy and therapeutic efficacy. Statistical analysis employed fixed- and random-effects models, with subgroup and sensitivity analyses exploring the impact of AI methodologies and study designs.
A total of 14 studies met the inclusion criteria, representing diverse AI applications in diagnosing and treating psychiatric disorders. The pooled diagnostic accuracy was 85% (95% CI: 80%-87%), with ML models achieving the highest accuracy, followed by hybrid and DL models. For therapeutic efficacy, the pooled effect size was 84% (95% CI: 82%-86%), with ML excelling in personalized treatment plans and symptom tracking. Moderate heterogeneity was observed, reflecting variability in study designs and populations. The risk of bias assessment indicated high methodological rigor in most studies, though challenges like algorithmic biases and data quality remain.
AI demonstrates robust diagnostic and therapeutic capabilities in psychiatry, offering a data-driven approach to personalized mental healthcare. Future research should address ethical concerns, standardize methodologies, and explore underrepresented populations to maximize AI's transformative potential in mental health.
人工智能(AI)已展现出通过提高诊断准确性和治疗干预措施来改变精神科护理的巨大潜力。精神科面临着诸如症状重叠、主观诊断方法以及个性化治疗需求等挑战。人工智能凭借其先进的数据处理能力,为这些复杂问题提供了创新解决方案。
本研究系统回顾并荟萃分析了现有文献,以评估人工智能在精神科护理中的诊断准确性和治疗效果,重点关注各种精神障碍和人工智能技术。
该研究遵循PRISMA指南,对多个数据库进行了全面的文献检索。根据预先定义的纳入标准,选择了调查人工智能在精神病学中的应用的实证研究,如机器学习(ML)、深度学习(DL)和混合模型。感兴趣的结果是诊断准确性和治疗效果。统计分析采用固定效应和随机效应模型,通过亚组分析和敏感性分析来探究人工智能方法和研究设计的影响。
共有14项研究符合纳入标准,代表了人工智能在诊断和治疗精神障碍方面的多种应用。汇总诊断准确性为85%(95%置信区间:80%-87%),其中机器学习模型的准确性最高,其次是混合模型和深度学习模型。对于治疗效果,汇总效应量为84%(95%置信区间:82%-86%),机器学习在个性化治疗方案和症状跟踪方面表现出色。观察到中等程度的异质性,反映出研究设计和人群的差异。偏倚风险评估表明大多数研究的方法学严谨性较高,尽管算法偏差和数据质量等挑战仍然存在。
人工智能在精神科展现出强大的诊断和治疗能力,为个性化精神卫生保健提供了一种数据驱动的方法。未来的研究应解决伦理问题,规范方法,并探索研究较少的人群,以最大限度地发挥人工智能在心理健康方面的变革潜力。