Suppr超能文献

在均匀扩散设置下将图像修复与去噪相联系。

Connecting image inpainting with denoising in the homogeneous diffusion setting.

作者信息

Gaa Daniel, Chizhov Vassillen, Peter Pascal, Weickert Joachim, Adam Robin Dirk

机构信息

Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University, Campus E1.7, 66041 Saarbrücken, Germany.

出版信息

Adv Contin Discret Model. 2025;2025(1):74. doi: 10.1186/s13662-025-03935-7. Epub 2025 Mar 28.

Abstract

While local methods for image denoising and inpainting may use similar concepts, their connections have hardly been investigated so far. The goal of this work is to establish links between the two by focusing on the most foundational scenario on both sides - the homogeneous diffusion setting. To this end, we study a denoising by inpainting (DbI) framework. It averages multiple inpainting results from different noisy subsets. We derive equivalence results between DbI on shifted regular grids and homogeneous diffusion filtering in 1D via an explicit relation between the density and the diffusion time. We also provide an empirical extension to the 2D case. We present experiments that confirm our theory and suggest that it can also be generalized to diffusions with nonhomogeneous data or nonhomogeneous diffusivities. More generally, our work demonstrates that the hardly explored idea of data adaptivity deserves more attention - it can be as powerful as some popular models with operator adaptivity.

摘要

虽然用于图像去噪和修复的局部方法可能使用类似的概念,但到目前为止,它们之间的联系几乎没有得到研究。这项工作的目标是通过关注双方最基本的场景——均匀扩散设置,在两者之间建立联系。为此,我们研究了一种通过修复进行去噪(DbI)的框架。它对来自不同噪声子集的多个修复结果进行平均。我们通过密度与扩散时间之间的显式关系,得出了一维中移位规则网格上的DbI与均匀扩散滤波之间的等价结果。我们还提供了二维情况的经验扩展。我们展示的实验证实了我们的理论,并表明它也可以推广到具有非均匀数据或非均匀扩散率的扩散情况。更一般地说,我们的工作表明,几乎未被探索的数据适应性概念值得更多关注——它可以与一些具有算子适应性的流行模型一样强大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8648/11953121/b68866f96ff3/13662_2025_3935_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验