Suppr超能文献

计算成像中的确定性边缘保持正则化。

Deterministic edge-preserving regularization in computed imaging.

机构信息

CNRS-UNSA, Univ. de Nice-Sophia Antipolis, Valbonne.

出版信息

IEEE Trans Image Process. 1997;6(2):298-311. doi: 10.1109/83.551699.

Abstract

Many image processing problems are ill-posed and must be regularized. Usually, a roughness penalty is imposed on the solution. The difficulty is to avoid the smoothing of edges, which are very important attributes of the image. In this paper, we first give conditions for the design of such an edge-preserving regularization. Under these conditions, we show that it is possible to introduce an auxiliary variable whose role is twofold. First, it marks the discontinuities and ensures their preservation from smoothing. Second, it makes the criterion half-quadratic. The optimization is then easier. We propose a deterministic strategy, based on alternate minimizations on the image and the auxiliary variable. This leads to the definition of an original reconstruction algorithm, called ARTUR. Some theoretical properties of ARTUR are discussed. Experimental results illustrate the behavior of the algorithm. These results are shown in the field of 2D single photon emission tomography, but this method can be applied in a large number of applications in image processing.

摘要

许多图像处理问题都是不适定的,必须进行正则化。通常,对解施加粗糙度惩罚。困难在于避免平滑边缘,边缘是图像的非常重要的属性。在本文中,我们首先给出了设计这种保持边缘正则化的条件。在这些条件下,我们表明可以引入一个辅助变量,其作用是双重的。首先,它标记不连续性并确保它们免受平滑处理。其次,它使准则成为半二次型。然后优化变得更容易。我们提出了一种基于图像和辅助变量交替最小化的确定性策略。这导致了一种称为 ARTUR 的原始重建算法的定义。讨论了 ARTUR 的一些理论性质。实验结果说明了算法的行为。这些结果在二维单光子发射断层扫描领域得到了展示,但这种方法可以应用于图像处理的许多应用领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验