Suppr超能文献

使用人工智能的信息流行病学研究的系统评价:关于HIV暴露前预防的社交媒体帖子

Systematic review of infodemiology studies using artificial intelligence: social media posts on HIV preexposure prophylaxis.

作者信息

Kamitani Emiko, DeLuca Julia B, Mizuno Yuko

机构信息

Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA.

出版信息

AIDS. 2025 Jul 15;39(9):1254-1261. doi: 10.1097/QAD.0000000000004193. Epub 2025 Mar 27.

Abstract

OBJECTIVES

To explore how artificial intelligence (AI) can enhance infodemiology, which distributes and scans information in the electronic medium, to process social media posts for HIV preexposure prophylaxis (PrEP).

DESIGN

Systematic review.

METHODS

We searched in the U.S. Centers for Disease Control and Prevention's Prevention Research Synthesis database through June 2024 (PROSPERO: CRD42023458870). We included infodemiology studies published in English and reported using AI to process social media posts on PrEP. Two reviewers independently screened citations, extracted data, and conducted a risk of bias assessment using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies. Findings are narratively summarized.

RESULTS

Of the 135 citations screened, eight infodemiology studies were identified, analyzing over 58.9 million posts. Infodemiology studies found the PrEP topics commonly discussed in communities (e.g., barriers of uptake), rumors that may raise public health concerns (e.g., PrEP is a prevention method against COVID-19 infection), geographic locations where concerns regarding risk of acquiring HIV were raised (e.g., most HIV-related posts were from the 10 states with the highest numbers of new HIV diagnoses), and predicted HIV trends (e.g., HIV-related tweets were negatively correlated with the county-level HIV incidence rate in the following year).

CONCLUSIONS

Despite the limitations of this review including a small number of studies reviewed, our review suggests social media posts may provide information on real-time PrEP-related concerns, and AI can accelerate and enhance the processing of mass data to identify the information that communities need and the areas/locations that may need HIV prevention intervention.

摘要

目的

探讨人工智能(AI)如何加强信息传播流行病学,即在电子媒介中传播和扫描信息,以处理社交媒体上关于艾滋病病毒暴露前预防(PrEP)的帖子。

设计

系统评价。

方法

我们检索了美国疾病控制与预防中心的预防研究综合数据库,检索截至2024年6月的数据(国际前瞻性系统评价注册库:CRD42023458870)。我们纳入了以英文发表的、报告使用人工智能处理关于PrEP的社交媒体帖子的信息传播流行病学研究。两名评审员独立筛选文献、提取数据,并使用乔安娜·布里格斯研究所患病率研究关键评价清单进行偏倚风险评估。研究结果以叙述方式进行总结。

结果

在筛选的135篇文献中,确定了8项信息传播流行病学研究,分析了超过5890万条帖子。信息传播流行病学研究发现了社区中普遍讨论的PrEP主题(如接受PrEP的障碍)、可能引发公共卫生问题的谣言(如PrEP是预防新冠病毒感染的方法)、提出对感染艾滋病毒风险担忧的地理位置(如大多数与艾滋病毒相关的帖子来自新艾滋病毒诊断数最多 的10个州),以及预测的艾滋病毒趋势(如与艾滋病毒相关的推文与次年县级艾滋病毒发病率呈负相关)。

结论

尽管本综述存在局限性,包括所审查的研究数量较少,但我们的综述表明,社交媒体帖子可能提供有关PrEP相关实时担忧的信息,并且人工智能可以加速和加强对海量数据的处理,以识别社区需要的信息以及可能需要艾滋病毒预防干预的地区/地点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验