Kamitani Emiko, DeLuca Julia B, Mizuno Yuko
Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA.
AIDS. 2025 Jul 15;39(9):1254-1261. doi: 10.1097/QAD.0000000000004193. Epub 2025 Mar 27.
To explore how artificial intelligence (AI) can enhance infodemiology, which distributes and scans information in the electronic medium, to process social media posts for HIV preexposure prophylaxis (PrEP).
Systematic review.
We searched in the U.S. Centers for Disease Control and Prevention's Prevention Research Synthesis database through June 2024 (PROSPERO: CRD42023458870). We included infodemiology studies published in English and reported using AI to process social media posts on PrEP. Two reviewers independently screened citations, extracted data, and conducted a risk of bias assessment using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies. Findings are narratively summarized.
Of the 135 citations screened, eight infodemiology studies were identified, analyzing over 58.9 million posts. Infodemiology studies found the PrEP topics commonly discussed in communities (e.g., barriers of uptake), rumors that may raise public health concerns (e.g., PrEP is a prevention method against COVID-19 infection), geographic locations where concerns regarding risk of acquiring HIV were raised (e.g., most HIV-related posts were from the 10 states with the highest numbers of new HIV diagnoses), and predicted HIV trends (e.g., HIV-related tweets were negatively correlated with the county-level HIV incidence rate in the following year).
Despite the limitations of this review including a small number of studies reviewed, our review suggests social media posts may provide information on real-time PrEP-related concerns, and AI can accelerate and enhance the processing of mass data to identify the information that communities need and the areas/locations that may need HIV prevention intervention.
探讨人工智能(AI)如何加强信息传播流行病学,即在电子媒介中传播和扫描信息,以处理社交媒体上关于艾滋病病毒暴露前预防(PrEP)的帖子。
系统评价。
我们检索了美国疾病控制与预防中心的预防研究综合数据库,检索截至2024年6月的数据(国际前瞻性系统评价注册库:CRD42023458870)。我们纳入了以英文发表的、报告使用人工智能处理关于PrEP的社交媒体帖子的信息传播流行病学研究。两名评审员独立筛选文献、提取数据,并使用乔安娜·布里格斯研究所患病率研究关键评价清单进行偏倚风险评估。研究结果以叙述方式进行总结。
在筛选的135篇文献中,确定了8项信息传播流行病学研究,分析了超过5890万条帖子。信息传播流行病学研究发现了社区中普遍讨论的PrEP主题(如接受PrEP的障碍)、可能引发公共卫生问题的谣言(如PrEP是预防新冠病毒感染的方法)、提出对感染艾滋病毒风险担忧的地理位置(如大多数与艾滋病毒相关的帖子来自新艾滋病毒诊断数最多 的10个州),以及预测的艾滋病毒趋势(如与艾滋病毒相关的推文与次年县级艾滋病毒发病率呈负相关)。
尽管本综述存在局限性,包括所审查的研究数量较少,但我们的综述表明,社交媒体帖子可能提供有关PrEP相关实时担忧的信息,并且人工智能可以加速和加强对海量数据的处理,以识别社区需要的信息以及可能需要艾滋病毒预防干预的地区/地点。