Suppr超能文献

TAMRA 及 TAMRA 标记肽的紫外吸收光谱:密度泛函理论与经典分子动力学联合研究

UV Absorption Spectra of TAMRA and TAMRA Labeled Peptides: A Combined Density Functional Theory and Classical Molecular Dynamics Study.

作者信息

Kukulka Mercedes, Pem Barbara, Vazdar Katarina, Cwiklik Lukasz, Vazdar Mario

机构信息

Faculty of Chemistry, Jagiellonian University, Krakow, Poland.

Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia.

出版信息

J Comput Chem. 2025 Mar 30;46(8):e70096. doi: 10.1002/jcc.70096.

Abstract

This study explores the structural and electronic factors affecting the absorption spectra of 5-carboxy-tetramethylrhodamine (TAMRA) in water, a widely used fluorophore in imaging and molecular labeling in biophysical studies. Through molecular dynamics (MD) simulations and density functional theory (DFT) calculations, we examine TAMRA UV absorption spectra together with TAMRA-labeled peptides (Arg, Arg, Lys). We found that DFT calculations with different functionals underestimate TAMRA maximum UV absorption peak by ~100 nm, resulting in the maximum at ca. 450 nm instead of the experimental value of ca. 550 nm. However, incorporating MD simulation snapshots of TAMRA in water, the UV maximum peak shifts and is in close agreement with the experimental results due to the rotation of TAMRA N(CH) groups, effectively captured in MD simulations. The method is used to estimate the UV absorption spectra of TAMRA-labeled peptides, matching experimental values.

摘要

本研究探讨了影响5-羧基四甲基罗丹明(TAMRA)在水中吸收光谱的结构和电子因素,TAMRA是生物物理研究中成像和分子标记广泛使用的荧光团。通过分子动力学(MD)模拟和密度泛函理论(DFT)计算,我们研究了TAMRA的紫外吸收光谱以及TAMRA标记的肽(精氨酸、精氨酸、赖氨酸)。我们发现,使用不同泛函的DFT计算将TAMRA的最大紫外吸收峰低估了约100 nm,导致最大值在约450 nm处,而不是实验值约550 nm。然而,将TAMRA在水中的MD模拟快照纳入计算后,由于MD模拟有效捕捉到了TAMRA N(CH)基团的旋转,紫外最大峰发生了移动,并且与实验结果非常吻合。该方法用于估计TAMRA标记肽的紫外吸收光谱,与实验值相符。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec63/11957245/ef9296bacbe2/JCC-46-0-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验