Suppr超能文献

1 型糖尿病中长达数小时的血糖预测:使用浅层神经网络模型的个体化方法。

Multi-Hour Blood Glucose Prediction in Type 1 Diabetes: A Patient-Specific Approach Using Shallow Neural Network Models.

机构信息

Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA.

IQ Biology, Biofrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.

出版信息

Diabetes Technol Ther. 2020 Dec;22(12):883-891. doi: 10.1089/dia.2020.0061. Epub 2020 Oct 13.

Abstract

Considering current insulin action profiles and the nature of glycemic responses to insulin, there is an acute need for longer term, accurate, blood glucose predictions to inform insulin dosing schedules and enable effective decision support for the treatment of type 1 diabetes (T1D). However, current methods achieve acceptable accuracy only for prediction horizons of up to 1 h, whereas typical postprandial excursions and insulin action profiles last 4-6 h. In this study, we present models for prediction horizons of 60-240 min developed by leveraging "shallow" , allowing for significantly lower complexity compared with related approaches. Patient-specific neural network-based predictive models are developed and tested on previously collected data from a cohort of 24 subjects with T1D. Models are designed to avoid serious pitfalls through incorporating essential physiological knowledge into model structure. Patient-specific models were generated to predict glucose 60, 90, 120, 180, and 240 min ahead, and a "transfer learning" approach to improve accuracy for patients where data are limited. Finally, we determined subgroup characteristics that result in higher model accuracy overall. Root mean squared error was 28 ± 4, 33 ± 4, 38 ± 6, 40 ± 8, and 43 ± 12 mg/dL for 60, 90, 120, 180, and 240 min, respectively. For all prediction horizons, at least 93% of predictions were clinically acceptable by the Clarke error grid. Variance of historic continuous glucose monitor (CGM) values was a strong predictor for the need of transfer learning approaches. A shallow neural network, using features extracted from past CGM data and insulin logs, can achieve multi-hour glucose predictions with satisfactory accuracy. Models are patient specific, learnt on readily available data without the need for additional tests, and improve accuracy while lowering complexity compared with related approaches, paving the way for new advisory and closed loop algorithms able to encompass most of the insulin action timeframe.

摘要

考虑到当前的胰岛素作用模式和血糖对胰岛素的反应性质,迫切需要更长期、准确的血糖预测来告知胰岛素给药方案,并为 1 型糖尿病(T1D)的治疗提供有效的决策支持。然而,目前的方法仅在预测时间不超过 1 小时的情况下达到可接受的精度,而典型的餐后波动和胰岛素作用模式持续 4-6 小时。在这项研究中,我们提出了预测时间为 60-240 分钟的模型,这些模型是通过利用“浅层”技术开发的,与相关方法相比,其复杂度显著降低。我们基于以前从 24 名 T1D 患者中收集的数据,开发和测试了基于患者特异性神经网络的预测模型。通过将基本生理知识纳入模型结构,设计模型以避免严重的陷阱。为预测葡萄糖 60、90、120、180 和 240 分钟,生成了患者特异性模型,并采用“迁移学习”方法来提高数据有限的患者的准确性。最后,我们确定了导致整体模型精度更高的亚组特征。对于 60、90、120、180 和 240 分钟的预测,均方根误差分别为 28±4、33±4、38±6、40±8 和 43±12mg/dL。对于所有预测时间,至少 93%的预测通过 Clarke 误差网格被认为是临床可接受的。历史连续血糖监测(CGM)值的方差是需要采用迁移学习方法的强有力预测指标。使用从过去 CGM 数据和胰岛素日志中提取的特征的浅层神经网络可以实现多小时血糖预测,精度令人满意。模型是患者特异性的,可在易于获得的数据上学习,无需额外的测试,与相关方法相比,提高了准确性并降低了复杂性,为能够涵盖大部分胰岛素作用时间的新的咨询和闭环算法铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验