Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
J Diabetes Sci Technol. 2022 Jan;16(1):7-18. doi: 10.1177/19322968211042621. Epub 2021 Sep 7.
In this work, we developed glucose forecasting algorithms trained and evaluated on a large dataset of free-living people with type 1 diabetes (T1D) using closed-loop (CL) and sensor-augmented pump (SAP) therapies; and we demonstrate how glucose variability impacts accuracy. We introduce the glucose variability impact index (GVII) and the glucose prediction consistency index (GPCI) to assess the accuracy of prediction algorithms.
A long-short-term-memory (LSTM) neural network was designed to predict glucose up to 60 minutes in the future using continuous glucose measurements and insulin data collected from 175 people with T1D (41,318 days) and evaluated on 75 people (11,333 days) from the Tidepool Big Data Donation Dataset. LSTM was compared with two naïve forecasting algorithms as well as Ridge linear regression and a random forest using root-mean-square error (RMSE). Parkes error grid quantified clinical accuracy. Regression analysis was used to derive the GVII and GPCI.
The LSTM had highest accuracy and best GVII and GPCI. RMSE for CL was 19.8 ± 3.2 and 33.2 ± 5.4 mg/dL for 30- and 60-minute prediction horizons, respectively. RMSE for SAP was 19.6 ± 3.8 and 33.1 ± 7.3 mg/dL for 30- and 60-minute prediction horizons, respectively; 99.6% and 97.6% of predictions were within zones A+B of the Parkes error grid at 30- and 60-minute prediction horizons, respectively. Glucose variability was strongly correlated with RMSE (R≥0.64, < 0.001); GVII and GPCI demonstrated a means to compare algorithms across datasets with different glucose variability.
The LSTM model was accurate on a large real-world free-living dataset. Glucose variability should be considered when assessing prediction accuracy using indices such as GVII and GPCI.
本研究开发了适用于使用闭环(CL)和传感器增强型泵(SAP)疗法的 1 型糖尿病(T1D)患者的大型自由生活人群的葡萄糖预测算法,并评估了其性能;还展示了葡萄糖变异性对准确性的影响。我们引入了葡萄糖变异性影响指数(GVII)和葡萄糖预测一致性指数(GPCI)来评估预测算法的准确性。
设计了一个长短期记忆(LSTM)神经网络,使用从 175 名 T1D 患者(41318 天)收集的连续葡萄糖测量值和胰岛素数据,预测未来 60 分钟的葡萄糖水平,并在 Tidepool 大数据捐赠数据集的 75 名患者(11333 天)上进行了评估。将 LSTM 与两种简单的预测算法以及 Ridge 线性回归和随机森林进行比较,均采用均方根误差(RMSE)。Parkes 误差网格量化了临床准确性。使用回归分析得出 GVII 和 GPCI。
LSTM 具有最高的准确性和最佳的 GVII 和 GPCI。CL 的 RMSE 为 19.8 ± 3.2 和 33.2 ± 5.4 mg/dL,预测时间分别为 30 分钟和 60 分钟;SAP 的 RMSE 为 19.6 ± 3.8 和 33.1 ± 7.3 mg/dL,预测时间分别为 30 分钟和 60 分钟;30 分钟和 60 分钟预测时间内,预测结果分别有 99.6%和 97.6%落在 Parkes 误差网格的 A+B 区内。葡萄糖变异性与 RMSE 密切相关(R≥0.64,<0.001);GVII 和 GPCI 表明,通过指数如 GVII 和 GPCI 可以比较不同数据集之间的算法。
LSTM 模型在大型真实自由生活数据集上具有较高的准确性。在使用 GVII 和 GPCI 等指数评估预测准确性时,应考虑葡萄糖变异性。