Shabestari Payam S, Schoisswohl Stefan, Wellauer Zino, Naas Adrian, Kleinjung Tobias, Schecklmann Martin, Langguth Berthold, Neff Patrick
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
Sci Rep. 2025 Mar 31;15(1):10968. doi: 10.1038/s41598-025-95351-w.
Tinnitus is defined as the perception of sound without an external source. Its perceptual suppression or on/off states remain poorly understood. This study investigates neural traits linked to brief acoustic tinnitus suppression (BATS) using naive resting-state EEG (closed eyes) from 102 individuals. A set of EEG features (band power, entropy, aperiodic slope and offset of the EEG spectrum, and connectivity) and standard classifiers were applied achieving consistent high accuracy across data splits: 98% for sensor and 86% for source models. The Random Forest model outperformed other classifiers by excelling in robustness and reduction of overfitting. It identified several key EEG features, most prominently alpha and gamma frequency band power. Gamma power was stronger in the left auditory network, while alpha power dominated the right hemisphere. Aperiodic features were normalized in individuals with BATS. Additionally, hyperconnected auditory-limbic networks in BATS suggest sensory gating may aid suppression. These findings demonstrate robust classification of BATS status, revealing distinct neural traits between tinnitus subpopulations. Our work emphasizes the role of neural mechanisms in predicting and managing tinnitus suppression. Moreover, it advances the understanding of effective feature selection, model choice, and validation strategies for analyzing clinical neurophysiological data in general.
耳鸣被定义为在没有外部声源的情况下对声音的感知。其感知抑制或开/关状态仍未得到充分理解。本研究使用102名个体的原始静息态脑电图(闭眼)来研究与短暂性耳鸣声抑制(BATS)相关的神经特征。应用了一组脑电图特征(频段功率、熵、脑电图频谱的非周期性斜率和偏移以及连通性)和标准分类器,在数据划分中均实现了一致的高精度:传感器模型为98%,源模型为86%。随机森林模型在稳健性和减少过拟合方面表现出色,优于其他分类器。它识别出了几个关键的脑电图特征,最显著的是阿尔法和伽马频段功率。伽马功率在左侧听觉网络中更强,而阿尔法功率在右侧半球占主导。BATS个体的非周期性特征得到了归一化。此外,BATS中听觉 - 边缘网络的超连接表明感觉门控可能有助于抑制。这些发现证明了对BATS状态的稳健分类,揭示了耳鸣亚群之间不同的神经特征。我们的工作强调了神经机制在预测和管理耳鸣抑制中的作用。此外,它还推进了对一般临床神经生理数据分析中有效特征选择、模型选择和验证策略的理解。
Neuroimage Clin. 2018-8-31
Appl Psychophysiol Biofeedback. 2024-6
Hum Brain Mapp. 2024-2-15
Front Hum Neurosci. 2023-4-26
J Clin Med. 2023-4-24
Brain Commun. 2023-2-1
Sensors (Basel). 2023-1-12
JAMA Neurol. 2022-9-1