文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过可解释人工智能方法利用静息态脑电图预测耳鸣声抑制

Prediction of acoustic tinnitus suppression using resting-state EEG via explainable AI approach.

作者信息

Shabestari Payam S, Schoisswohl Stefan, Wellauer Zino, Naas Adrian, Kleinjung Tobias, Schecklmann Martin, Langguth Berthold, Neff Patrick

机构信息

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.

出版信息

Sci Rep. 2025 Mar 31;15(1):10968. doi: 10.1038/s41598-025-95351-w.


DOI:10.1038/s41598-025-95351-w
PMID:40164712
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11958676/
Abstract

Tinnitus is defined as the perception of sound without an external source. Its perceptual suppression or on/off states remain poorly understood. This study investigates neural traits linked to brief acoustic tinnitus suppression (BATS) using naive resting-state EEG (closed eyes) from 102 individuals. A set of EEG features (band power, entropy, aperiodic slope and offset of the EEG spectrum, and connectivity) and standard classifiers were applied achieving consistent high accuracy across data splits: 98% for sensor and 86% for source models. The Random Forest model outperformed other classifiers by excelling in robustness and reduction of overfitting. It identified several key EEG features, most prominently alpha and gamma frequency band power. Gamma power was stronger in the left auditory network, while alpha power dominated the right hemisphere. Aperiodic features were normalized in individuals with BATS. Additionally, hyperconnected auditory-limbic networks in BATS suggest sensory gating may aid suppression. These findings demonstrate robust classification of BATS status, revealing distinct neural traits between tinnitus subpopulations. Our work emphasizes the role of neural mechanisms in predicting and managing tinnitus suppression. Moreover, it advances the understanding of effective feature selection, model choice, and validation strategies for analyzing clinical neurophysiological data in general.

摘要

耳鸣被定义为在没有外部声源的情况下对声音的感知。其感知抑制或开/关状态仍未得到充分理解。本研究使用102名个体的原始静息态脑电图(闭眼)来研究与短暂性耳鸣声抑制(BATS)相关的神经特征。应用了一组脑电图特征(频段功率、熵、脑电图频谱的非周期性斜率和偏移以及连通性)和标准分类器,在数据划分中均实现了一致的高精度:传感器模型为98%,源模型为86%。随机森林模型在稳健性和减少过拟合方面表现出色,优于其他分类器。它识别出了几个关键的脑电图特征,最显著的是阿尔法和伽马频段功率。伽马功率在左侧听觉网络中更强,而阿尔法功率在右侧半球占主导。BATS个体的非周期性特征得到了归一化。此外,BATS中听觉 - 边缘网络的超连接表明感觉门控可能有助于抑制。这些发现证明了对BATS状态的稳健分类,揭示了耳鸣亚群之间不同的神经特征。我们的工作强调了神经机制在预测和管理耳鸣抑制中的作用。此外,它还推进了对一般临床神经生理数据分析中有效特征选择、模型选择和验证策略的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/21d1b94c0fcf/41598_2025_95351_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/0c1f81946c2d/41598_2025_95351_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/9f5b0e7778e9/41598_2025_95351_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/537f3d9c29f6/41598_2025_95351_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/8ebc1754b1de/41598_2025_95351_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/21d1b94c0fcf/41598_2025_95351_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/0c1f81946c2d/41598_2025_95351_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/9f5b0e7778e9/41598_2025_95351_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/537f3d9c29f6/41598_2025_95351_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/8ebc1754b1de/41598_2025_95351_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cd/11958676/21d1b94c0fcf/41598_2025_95351_Fig5_HTML.jpg

相似文献

[1]
Prediction of acoustic tinnitus suppression using resting-state EEG via explainable AI approach.

Sci Rep. 2025-3-31

[2]
Neurophysiological correlates of residual inhibition in tinnitus: Hints for trait-like EEG power spectra.

Clin Neurophysiol. 2021-7

[3]
Enhanced classification of tinnitus patients using EEG microstates and deep learning techniques.

Sci Rep. 2025-5-7

[4]
Alterations in brain activity and functional connectivity originating residual inhibition of tinnitus induced by tailor-made notched music training.

Hear Res. 2025-3

[5]
Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus.

Neuroimage Clin. 2017-5-28

[6]
Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.

Neuroimage Clin. 2018-8-31

[7]
Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation.

Hum Brain Mapp. 2014-5

[8]
Involvement of cortico-subcortical circuits in normoacousic chronic tinnitus: A source localization EEG study.

Clin Neurophysiol. 2015-12

[9]
The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.

Hear Res. 2017-12

[10]
Whole scalp resting state EEG of oscillatory brain activity shows no parametric relationship with psychoacoustic and psychosocial assessment of tinnitus: A repeated measures study.

Hear Res. 2016-1

引用本文的文献

[1]
Research trends and hotspots of cognitive behavioral therapy for tinnitus: a bibliometric analysis.

Front Neurosci. 2025-5-9

本文引用的文献

[1]
Do Miniature Eye Movements Affect Neurofeedback Training Performance? A Combined EEG-Eye Tracking Study.

Appl Psychophysiol Biofeedback. 2024-6

[2]
What is the role of the hippocampus and parahippocampal gyrus in the persistence of tinnitus?

Hum Brain Mapp. 2024-2-15

[3]
Exploring functional connectivity alterations in sudden sensorineural hearing loss: A multilevel analysis.

Brain Res. 2024-2-1

[4]
Deep learning-based electroencephalic diagnosis of tinnitus symptom.

Front Hum Neurosci. 2023-4-26

[5]
Tinnitus Guidelines and Their Evidence Base.

J Clin Med. 2023-4-24

[6]
Investigation of global brain dynamics depending on emotion regulation strategies indicated by graph theoretical brain network measures at system level.

Cogn Neurodyn. 2023-4

[7]
Tinnitus and distress: an electroencephalography classification study.

Brain Commun. 2023-2-1

[8]
Prediction of Tinnitus Treatment Outcomes Based on EEG Sensors and TFI Score Using Deep Learning.

Sensors (Basel). 2023-1-12

[9]
Triple network activation causes tinnitus in patients with sudden sensorineural hearing loss: A model-based volume-entropy analysis.

Front Neurosci. 2022-11-17

[10]
Global Prevalence and Incidence of Tinnitus: A Systematic Review and Meta-analysis.

JAMA Neurol. 2022-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索