Suppr超能文献

通过标准、基础设施和社区参与来分享人类肿瘤图谱网络的数据。

Sharing data from the Human Tumor Atlas Network through standards, infrastructure and community engagement.

作者信息

de Bruijn Ino, Nikolov Milen, Lau Clarisse, Clayton Ashley, Gibbs David L, Mitraka Elvira, Pozhidayeva Dar'ya, Lash Alex, Sumer Selcuk Onur, Altreuter Jennifer, Anton Kristen, DeFelice Mialy, Li Xiang, Lisman Aaron, Longabaugh William J R, Muhlich Jeremy, Santagata Sandro, Nandakumar Subhiksha, Sorger Peter K, Suver Christine, Doan Xengie, Guinney Justin, Schultz Nikolaus, Taylor Adam J, Thorsson Vésteinn, Cerami Ethan, Eddy James A

机构信息

Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Sage Bionetworks, Seattle, WA, USA.

出版信息

Nat Methods. 2025 Apr;22(4):664-671. doi: 10.1038/s41592-025-02643-0. Epub 2025 Mar 31.

Abstract

Data from the first phase of the Human Tumor Atlas Network (HTAN) are now available, comprising 8,425 biospecimens from 2,042 research participants profiled with more than 20 molecular assays. The data were generated to study the evolution from precancerous to advanced disease. The HTAN Data Coordinating Center (DCC) has enabled their dissemination and effective reuse. We describe the diverse datasets, how to access them, data standards, underlying infrastructure and governance approaches, and our methods to sustain community engagement. HTAN data can be accessed through the HTAN Portal, explored in visualization tools-including CellxGene, Minerva and cBioPortal-and analyzed in the cloud through the NCI Cancer Research Data Commons. Infrastructure was developed to enable data ingestion and dissemination through the Synapse platform. The HTAN DCC's flexible and modular approach to sharing complex cancer research data offers valuable insights to other data-coordination efforts and researchers looking to leverage HTAN data.

摘要

人类肿瘤图谱网络(HTAN)第一阶段的数据现已可用,包括来自2042名研究参与者的8425份生物样本,这些样本通过20多种分子检测方法进行了分析。这些数据是为了研究从癌前病变到晚期疾病的演变而生成的。HTAN数据协调中心(DCC)实现了这些数据的传播和有效再利用。我们描述了多样的数据集、如何访问这些数据集、数据标准、基础架构和治理方法,以及我们维持社区参与的方法。HTAN数据可通过HTAN门户访问,在包括cellxGene、Minerva和cBioPortal在内的可视化工具中进行探索,并通过NCI癌症研究数据共享平台在云端进行分析。开发了基础设施,以通过Synapse平台实现数据的摄取和传播。HTAN DCC共享复杂癌症研究数据的灵活且模块化的方法,为其他数据协调工作以及希望利用HTAN数据的研究人员提供了宝贵的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验