Suppr超能文献

应对保护制度社会经济影响评估中的数据挑战。

Navigating data challenges in socioeconomic impact assessments of conservation regimes.

作者信息

Hajjar Reem, Oldekop Johan A, Toto Roberto, Alencar Lucas, Bell Samuel D, Devenish Katie, Khuu Duong T, Hernandez-Montilla Mariana, Jung Suhyun, Nofyanza Sandy, Sapkota Lok Mani

机构信息

Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.

Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA.

出版信息

Conserv Biol. 2025 Apr;39(2):e14457. doi: 10.1111/cobi.14457.

Abstract

Scholars are increasingly assessing the impact of conservation interventions at national and regional scales with robust causal inference methods designed to emulate randomized control trials (quasi-experimental methods). Although spatial and temporal data to measure habitat loss and gain with remote sensing tools are increasingly available, data to measure spatially explicit poverty and human well-being at a high resolution are far less available. Bridging this data gap is essential to assess the social outcomes of conservation actions at scale and improve understanding of socioenvironmental synergies and trade-offs. We reviewed the kinds of socioeconomic data that are publicly available to measure the effects of conservation interventions on poverty and well-being, including national census data, representative household surveys funded by international organizations, surveys collected for individual research programs, and high-resolution gridded poverty and well-being data sets. We considered 4 challenges in the use of these data sets: consistency and availability of indicators and metrics across regions and countries, availability of data at appropriate temporal and spatial resolutions, and technical considerations associated with data available in different formats. Potential workarounds to these challenges include analytical methods to help resolve data mismatches and the use of emerging data products.

摘要

学者们越来越多地使用旨在模拟随机对照试验的稳健因果推断方法(准实验方法),在国家和区域层面评估保护干预措施的影响。尽管利用遥感工具测量栖息地丧失和增加的时空数据越来越多,但用于高分辨率测量空间明确的贫困和人类福祉的数据却少得多。弥合这一数据差距对于大规模评估保护行动的社会成果以及增进对社会环境协同效应和权衡取舍的理解至关重要。我们回顾了可公开获取的各类社会经济数据,这些数据用于衡量保护干预措施对贫困和福祉的影响,包括国家人口普查数据、由国际组织资助的代表性住户调查、为个别研究项目收集的调查,以及高分辨率网格化贫困和福祉数据集。我们考虑了使用这些数据集时面临的4个挑战:不同区域和国家指标及度量标准的一致性和可获取性、适当时间和空间分辨率的数据可获取性,以及与不同格式数据相关的技术考量。应对这些挑战的潜在方法包括有助于解决数据不匹配问题的分析方法以及新兴数据产品的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2255/11959336/a3ea534df384/COBI-39-e14457-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验