School of Information, University of California, Berkeley, CA 94720.
Meta, Inc., Menlo Park, CA 94025.
Proc Natl Acad Sci U S A. 2022 Jan 18;119(3). doi: 10.1073/pnas.2113658119.
Many critical policy decisions, from strategic investments to the allocation of humanitarian aid, rely on data about the geographic distribution of wealth and poverty. Yet many poverty maps are out of date or exist only at very coarse levels of granularity. Here we develop microestimates of the relative wealth and poverty of the populated surface of all 135 low- and middle-income countries (LMICs) at 2.4 km resolution. The estimates are built by applying machine-learning algorithms to vast and heterogeneous data from satellites, mobile phone networks, and topographic maps, as well as aggregated and deidentified connectivity data from Facebook. We train and calibrate the estimates using nationally representative household survey data from 56 LMICs and then validate their accuracy using four independent sources of household survey data from 18 countries. We also provide confidence intervals for each microestimate to facilitate responsible downstream use. These estimates are provided free for public use in the hope that they enable targeted policy response to the COVID-19 pandemic, provide the foundation for insights into the causes and consequences of economic development and growth, and promote responsible policymaking in support of sustainable development.
许多关键的政策决策,从战略投资到人道主义援助的分配,都依赖于关于财富和贫困地理分布的数据。然而,许多贫困地图已经过时,或者只存在于非常粗略的粒度级别。在这里,我们以 2.4 公里的分辨率为所有 135 个低收入和中等收入国家(LMIC)的有人居住表面开发了相对财富和贫困的微观估计。这些估计是通过将机器学习算法应用于卫星、移动电话网络和地形地图的大量异构数据以及来自 Facebook 的聚合和去识别连接数据来构建的。我们使用来自 56 个 LMIC 的具有代表性的全国性家庭调查数据来训练和校准这些估计,然后使用来自 18 个国家的四个独立家庭调查数据源来验证其准确性。我们还为每个微观估计提供置信区间,以方便负责任地下游使用。这些估计是免费提供给公众使用的,希望它们能够针对 COVID-19 大流行采取有针对性的政策应对措施,为了解经济发展和增长的原因和后果奠定基础,并促进支持可持续发展的负责任的政策制定。