Wang Xiaomin, Yu Ying, Wang Qingyun
Department of Dynamics and Control, Beihang University, Beijing 100191, China.
School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China.
Fundam Res. 2024 Feb 7;5(1):82-92. doi: 10.1016/j.fmre.2024.01.014. eCollection 2025 Jan.
Optogenetic techniques provide precise control over the activity of specific neurons within the nucleus, offering more accurate regulatory effects compared to deep brain stimulation. The heterogeneity of the globus pallidus externa (GPe) has garnered wide attention, wherein significant differences in pathological changes emphasize its potential as a stimulation target with distinct mechanisms. A basal ganglia-thalamus (BG-Th) network model incorporating heterogeneous GPe is developed to explore potential optogenetic stimulation targets for treating Parkinson's disease (PD). Initially, the modulation mechanisms of single-target optogenetic stimulation on the abnormal rhythmic oscillations of BG nuclei are examined. Excitation of D1 medium spine neuron (MSN), calcium-binding protein parvalbumin (PV) GPe, and inhibition of globus pallidus interna (GPi) can effectively suppress synchronous bursting activity in GPi, while excitation of GPi promotes high-frequency discharge to disrupt beta oscillations. Furthermore, dual-target optogenetic stimulation strategies are devised to reduce energy consumption. Results show that targets with similar mechanisms exhibit additive effects, whereas targets with opposing mechanisms lead to cancellation. The underlying effective mechanisms of dual-target strategies are: enhancing the inhibitory input to GPi thus inhibiting the activity of GPi, or disrupting beta oscillations by restoring high-frequency discharges in GPi. The strategy composed of exciting D1 MSN and inhibiting GPi requires the minimum total light intensity among single-target and dual-target strategies in our simulation. Furthermore, simultaneously enhancing PV GPe and inhibiting D2 MSN achieves the greatest reduction in total energy consumption (40.8% reduction), compared to only enhancing PV GPe. The findings unveil effective circuit mechanisms of optogenetic stimulation and provide novel insights for designing precise regulatory strategies for PD.
光遗传学技术能够精确控制核内特定神经元的活动,与深部脑刺激相比,具有更精确的调节作用。外侧苍白球(GPe)的异质性已引起广泛关注,其中病理变化的显著差异凸显了其作为具有独特机制的刺激靶点的潜力。构建了一个包含异质性GPe的基底神经节 - 丘脑(BG - Th)网络模型,以探索治疗帕金森病(PD)的潜在光遗传学刺激靶点。首先,研究了单靶点光遗传学刺激对BG核异常节律振荡的调节机制。兴奋D1中型棘神经元(MSN)、钙结合蛋白小白蛋白(PV)阳性的GPe以及抑制内侧苍白球(GPi)可有效抑制GPi中的同步爆发活动,而兴奋GPi则促进高频放电以破坏β振荡。此外,还设计了双靶点光遗传学刺激策略以降低能量消耗。结果表明,具有相似机制的靶点表现出相加效应,而具有相反机制的靶点则导致抵消。双靶点策略的潜在有效机制为:增强对GPi的抑制性输入从而抑制GPi的活动,或通过恢复GPi中的高频放电来破坏β振荡。在我们的模拟中,由兴奋D1 MSN和抑制GPi组成的策略在单靶点和双靶点策略中所需的总光强最小。此外,与仅增强PV GPe相比,同时增强PV GPe并抑制D2 MSN可实现最大程度的总能量消耗降低(降低了40.8%)。这些发现揭示了光遗传学刺激的有效电路机制,并为设计针对PD的精确调节策略提供了新的见解。