文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的腰椎侧位X线片椎体骨折和骨质疏松症识别以及双能X线吸收法椎体骨折评估以预测骨折发生

Deep learning-based identification of vertebral fracture and osteoporosis in lateral spine radiographs and DXA vertebral fracture assessment to predict incident fracture.

作者信息

Hong Namki, Cho Sang Wouk, Lee Young Han, Kim Chang Oh, Kim Hyeon Chang, Rhee Yumie, Leslie William D, Cummings Steven R, Kim Kyoung Min

机构信息

Division of Endocrinology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, South Korea.

Institute for Innovation in Digital Healthcare (IIDH), Yonsei University Health System, Seoul 03722, South Korea.

出版信息

J Bone Miner Res. 2025 May 24;40(5):628-638. doi: 10.1093/jbmr/zjaf050.


DOI:10.1093/jbmr/zjaf050
PMID:40167218
Abstract

Deep learning (DL) identification of vertebral fractures and osteoporosis in lateral spine radiographs and DXA vertebral fracture assessment (VFA) images may improve fracture risk assessment in older adults. In 26 299 lateral spine radiographs from 9276 individuals attending a tertiary-level institution (60% train set; 20% validation set; 20% test set; VERTE-X cohort), DL models were developed to detect prevalent vertebral fracture (pVF) and osteoporosis. The pre-trained DL models from lateral spine radiographs were then fine-tuned in 30% of a DXA VFA dataset (KURE cohort), with performance evaluated in the remaining 70% test set. The area under the receiver operating characteristics curve (AUROC) for DL models to detect pVF and osteoporosis was 0.926 (95% CI 0.908-0.955) and 0.848 (95% CI 0.827-0.869) from VERTE-X spine radiographs, respectively, and 0.924 (95% CI 0.905-0.942) and 0.867 (95% CI 0.853-0.881) from KURE DXA VFA images, respectively. A total of 13.3% and 13.6% of individuals sustained an incident fracture during a median follow-up of 5.4 years and 6.4 years in the VERTE-X test set (n = 1852) and KURE test set (n = 2456), respectively. Incident fracture risk was significantly greater among individuals with DL-detected vertebral fracture (hazard ratios [HRs] 3.23 [95% CI 2.51-5.17] and 2.11 [95% CI 1.62-2.74] for the VERTE-X and KURE test sets) or DL-detected osteoporosis (HR 2.62 [95% CI 1.90-3.63] and 2.14 [95% CI 1.72-2.66]), which remained significant after adjustment for clinical risk factors and femoral neck bone mineral density. DL scores improved incident fracture discrimination and net benefit when combined with clinical risk factors. In summary, DL-detected pVF and osteoporosis in lateral spine radiographs and DXA VFA images enhanced fracture risk prediction in older adults.

摘要

深度学习(DL)在脊柱侧位X线片和双能X线吸收法(DXA)椎体骨折评估(VFA)图像中识别椎体骨折和骨质疏松症,可能会改善老年人的骨折风险评估。在来自一所三级医疗机构的9276名个体的26299张脊柱侧位X线片(60%为训练集;20%为验证集;20%为测试集;VERTE-X队列)中,开发了DL模型以检测现患椎体骨折(pVF)和骨质疏松症。然后,将来自脊柱侧位X线片的预训练DL模型在30%的DXA VFA数据集(KURE队列)中进行微调,并在其余70%的测试集中评估性能。DL模型检测pVF和骨质疏松症的受试者工作特征曲线下面积(AUROC),在VERTE-X脊柱侧位X线片中分别为0.926(95%CI 0.908 - 0.955)和0.848(95%CI 0.827 - 0.869),在KURE DXA VFA图像中分别为0.924(95%CI 0.905 - 0.942)和0.867(95%CI 0.853 - 0.881)。在VERTE-X测试集(n = 1852)和KURE测试集(n = 2456)中,分别有13.3%和13.6%的个体在中位随访5.4年和6.4年期间发生了新发骨折。在DL检测到椎体骨折的个体中(VERTE-X和KURE测试集的风险比[HRs]分别为3.23[95%CI 2.51 - 5.17]和2.11[95%CI 1.62 - 2.74])或DL检测到骨质疏松症的个体中(HR 2.62[95%CI 1.90 - 3.63]和2.14[95%CI 1.72 - 2.66]),新发骨折风险显著更高,在调整临床风险因素和股骨颈骨密度后仍具有显著性。当与临床风险因素相结合时,DL评分改善了新发骨折的辨别能力和净效益。总之,DL在脊柱侧位X线片和DXA VFA图像中检测到的pVF和骨质疏松症增强了老年人的骨折风险预测。

相似文献

[1]
Deep learning-based identification of vertebral fracture and osteoporosis in lateral spine radiographs and DXA vertebral fracture assessment to predict incident fracture.

J Bone Miner Res. 2025-5-24

[2]
Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography.

J Bone Miner Res. 2023-6

[3]
Vertebral fracture assessment by dual-energy X-ray absorptiometry along with bone mineral density in the evaluation of postmenopausal osteoporosis.

Arch Osteoporos. 2020-2-24

[4]
Simultaneous automated ascertainment of prevalent vertebral fracture and abdominal aortic calcification in clinical practice: role in fracture risk assessment.

J Bone Miner Res. 2024-8-5

[5]
Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists?

Clin Orthop Relat Res. 2021-7-1

[6]
Vertebral fracture: epidemiology, impact and use of DXA vertebral fracture assessment in fracture liaison services.

Osteoporos Int. 2021-3

[7]
Grade 1 Vertebral Fractures Identified by Densitometric Lateral Spine Imaging Predict Incident Major Osteoporotic Fracture Independently of Clinical Risk Factors and Bone Mineral Density in Older Women.

J Bone Miner Res. 2020-10

[8]
Prevalent vertebral fracture on bone density lateral spine (VFA) images in routine clinical practice predict incident fractures.

Bone. 2019-1-8

[9]
Vertebral fracture assessment by DXA is inferior to X-ray in clinical severe osteoporosis.

Osteoporos Int. 2016-7

[10]
Accuracy of densitometric vertebral fracture assessment when performed by DXA technicians--a cross-sectional, multiobserver study.

Osteoporos Int. 2016-4

引用本文的文献

[1]
Incorporating Artificial Intelligence into Fracture Risk Assessment: Using Clinical Imaging to Predict the Unpredictable.

Endocrinol Metab (Seoul). 2025-8

[2]
Deep learning algorithm for identifying osteopenia/osteoporosis using cervical radiography.

Sci Rep. 2025-7-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索