Hong Namki, Cho Sang Wouk, Lee Young Han, Kim Chang Oh, Kim Hyeon Chang, Rhee Yumie, Leslie William D, Cummings Steven R, Kim Kyoung Min
Division of Endocrinology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, South Korea.
Institute for Innovation in Digital Healthcare (IIDH), Yonsei University Health System, Seoul 03722, South Korea.
J Bone Miner Res. 2025 May 24;40(5):628-638. doi: 10.1093/jbmr/zjaf050.
Deep learning (DL) identification of vertebral fractures and osteoporosis in lateral spine radiographs and DXA vertebral fracture assessment (VFA) images may improve fracture risk assessment in older adults. In 26 299 lateral spine radiographs from 9276 individuals attending a tertiary-level institution (60% train set; 20% validation set; 20% test set; VERTE-X cohort), DL models were developed to detect prevalent vertebral fracture (pVF) and osteoporosis. The pre-trained DL models from lateral spine radiographs were then fine-tuned in 30% of a DXA VFA dataset (KURE cohort), with performance evaluated in the remaining 70% test set. The area under the receiver operating characteristics curve (AUROC) for DL models to detect pVF and osteoporosis was 0.926 (95% CI 0.908-0.955) and 0.848 (95% CI 0.827-0.869) from VERTE-X spine radiographs, respectively, and 0.924 (95% CI 0.905-0.942) and 0.867 (95% CI 0.853-0.881) from KURE DXA VFA images, respectively. A total of 13.3% and 13.6% of individuals sustained an incident fracture during a median follow-up of 5.4 years and 6.4 years in the VERTE-X test set (n = 1852) and KURE test set (n = 2456), respectively. Incident fracture risk was significantly greater among individuals with DL-detected vertebral fracture (hazard ratios [HRs] 3.23 [95% CI 2.51-5.17] and 2.11 [95% CI 1.62-2.74] for the VERTE-X and KURE test sets) or DL-detected osteoporosis (HR 2.62 [95% CI 1.90-3.63] and 2.14 [95% CI 1.72-2.66]), which remained significant after adjustment for clinical risk factors and femoral neck bone mineral density. DL scores improved incident fracture discrimination and net benefit when combined with clinical risk factors. In summary, DL-detected pVF and osteoporosis in lateral spine radiographs and DXA VFA images enhanced fracture risk prediction in older adults.
深度学习(DL)在脊柱侧位X线片和双能X线吸收法(DXA)椎体骨折评估(VFA)图像中识别椎体骨折和骨质疏松症,可能会改善老年人的骨折风险评估。在来自一所三级医疗机构的9276名个体的26299张脊柱侧位X线片(60%为训练集;20%为验证集;20%为测试集;VERTE-X队列)中,开发了DL模型以检测现患椎体骨折(pVF)和骨质疏松症。然后,将来自脊柱侧位X线片的预训练DL模型在30%的DXA VFA数据集(KURE队列)中进行微调,并在其余70%的测试集中评估性能。DL模型检测pVF和骨质疏松症的受试者工作特征曲线下面积(AUROC),在VERTE-X脊柱侧位X线片中分别为0.926(95%CI 0.908 - 0.955)和0.848(95%CI 0.827 - 0.869),在KURE DXA VFA图像中分别为0.924(95%CI 0.905 - 0.942)和0.867(95%CI 0.853 - 0.881)。在VERTE-X测试集(n = 1852)和KURE测试集(n = 2456)中,分别有13.3%和13.6%的个体在中位随访5.4年和6.4年期间发生了新发骨折。在DL检测到椎体骨折的个体中(VERTE-X和KURE测试集的风险比[HRs]分别为3.23[95%CI 2.51 - 5.17]和2.11[95%CI 1.62 - 2.74])或DL检测到骨质疏松症的个体中(HR 2.62[95%CI 1.90 - 3.63]和2.14[95%CI 1.72 - 2.66]),新发骨折风险显著更高,在调整临床风险因素和股骨颈骨密度后仍具有显著性。当与临床风险因素相结合时,DL评分改善了新发骨折的辨别能力和净效益。总之,DL在脊柱侧位X线片和DXA VFA图像中检测到的pVF和骨质疏松症增强了老年人的骨折风险预测。
Endocrinol Metab (Seoul). 2025-8