文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用颈椎X线摄影识别骨质减少/骨质疏松症的深度学习算法

Deep learning algorithm for identifying osteopenia/osteoporosis using cervical radiography.

作者信息

Tamai Koji, Imanishi Keiho, Terakawa Masaki, Uematsu Masato, Kato Minori, Toyoda Hiromitsu, Suzuki Akinobu, Takahashi Shinji, Yabu Akito, Sawada Yuta, Iwamae Masayoshi, Kobayashi Yuto, Okamura Yuki, Taniwaki Hiroshi, Kinoshita Yuki, Hoshino Masatoshi, Tabuchi Hitoshi, Nakamura Hiroaki, Terai Hidetomi

机构信息

Department of Orthopedics, Osaka Metropolitan University Graduate School of Medicine, 1-5-7, Asahimachi, Abenoku, Osaka City, Osaka, Japan.

e-Growth Co, Kyoto, Japan.

出版信息

Sci Rep. 2025 Jul 12;15(1):25274. doi: 10.1038/s41598-025-11285-3.


DOI:10.1038/s41598-025-11285-3
PMID:40652099
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12255677/
Abstract

Due to symptomatic gait imbalance and a high incidence of falls, patients with cervical disease-including degenerative cervical myelopathy-have a significantly increased risk of fragility fractures. To prevent such fractures in patients with cervical disease, treating osteoporosis is an important strategy. This study aimed to validate the diagnostic yield of a deep learning algorithm for detecting osteopenia/osteoporosis using cervical radiography and compare its diagnostic accuracy with that of spine surgeons. Samples were divided into training (n = 200) and test (n = 30) datasets. The deep learning algorithm, designed to detect T-scores of the femoral neck or lumbar spine <-1.0 using cervical radiography, was constructed using a convolutional neural network model. The number of correct diagnoses was compared between the algorithm and nine spine surgeons using the independent test dataset. The results indicated that the algorithm's diagnostic accuracy, sensitivity, and specificity in the independent test dataset were 0.800, 0.818, and 0.750, respectively. The rate of corrected answers by the deep learning algorithm was significantly higher than that of nine spine surgeons in the test dataset (80.0% vs. 60.6%; p = 0.032). In conclusion, the diagnostic yield of the algorithm was higher than that of spine surgeons.

摘要

由于有症状的步态失衡和高跌倒发生率,患有颈椎病(包括退行性颈椎脊髓病)的患者发生脆性骨折的风险显著增加。为预防颈椎病患者发生此类骨折,治疗骨质疏松症是一项重要策略。本研究旨在验证一种深度学习算法利用颈椎X线摄影检测骨质减少/骨质疏松症的诊断效能,并将其诊断准确性与脊柱外科医生的诊断准确性进行比较。样本被分为训练数据集(n = 200)和测试数据集(n = 30)。使用卷积神经网络模型构建深度学习算法,该算法旨在利用颈椎X线摄影检测股骨颈或腰椎的T值<-1.0。使用独立测试数据集比较该算法与九名脊柱外科医生的正确诊断数量。结果表明,该算法在独立测试数据集中的诊断准确性、敏感性和特异性分别为0.800、0.818和0.750。在测试数据集中,深度学习算法的正确答案率显著高于九名脊柱外科医生(80.0%对60.6%;p = 0.032)。总之,该算法的诊断效能高于脊柱外科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/83cdca4e0ba7/41598_2025_11285_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/1ee74b85f96f/41598_2025_11285_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/454c075fb0bd/41598_2025_11285_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/76481328ea90/41598_2025_11285_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/83cdca4e0ba7/41598_2025_11285_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/1ee74b85f96f/41598_2025_11285_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/454c075fb0bd/41598_2025_11285_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/76481328ea90/41598_2025_11285_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63cf/12255677/83cdca4e0ba7/41598_2025_11285_Fig4_HTML.jpg

相似文献

[1]
Deep learning algorithm for identifying osteopenia/osteoporosis using cervical radiography.

Sci Rep. 2025-7-12

[2]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[3]
A Convolutional Neural Network for Automated Detection of Cervical Ossification of the Posterior Longitudinal Ligament using Magnetic Resonance Imaging.

Clin Spine Surg. 2024-4-1

[4]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[5]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[6]
Triage tools for detecting cervical spine injury in pediatric trauma patients.

Cochrane Database Syst Rev. 2017-12-7

[7]
Treatment for osteoporosis in people with ß-thalassaemia.

Cochrane Database Syst Rev. 2016-3-10

[8]
PECARN prediction rule for cervical spine imaging of children presenting to the emergency department with blunt trauma: a multicentre prospective observational study.

Lancet Child Adolesc Health. 2024-7

[9]
A novel deep learning system for automated diagnosis and grading of lumbar spinal stenosis based on spine MRI: model development and validation.

Neurosurg Focus. 2025-7-1

[10]
Effect of Iron Overload on Bone Mineral Density in Patients with Transfusion-dependent Thalassemia.

J Assoc Physicians India. 2025-6

本文引用的文献

[1]
Deep learning-based identification of vertebral fracture and osteoporosis in lateral spine radiographs and DXA vertebral fracture assessment to predict incident fracture.

J Bone Miner Res. 2025-5-24

[2]
Letter to the Editor Regarding Same-Day Versus Staged Spinal Fusion : A Meta-Analysis of Clinical Outcomes.

Spine (Phila Pa 1976). 2025-3-15

[3]
SPINE20 Recommendations 2024 -Spinal Disability: Social Inclusion as a Key to Prevention and Management.

Global Spine J. 2025-1

[4]
Osteopenia: a key target for fracture prevention.

Lancet Diabetes Endocrinol. 2024-11

[5]
The METRIC-framework for assessing data quality for trustworthy AI in medicine: a systematic review.

NPJ Digit Med. 2024-8-3

[6]
Artificial intelligence-enhanced opportunistic screening of osteoporosis in CT scan: a scoping Review.

Osteoporos Int. 2024-10

[7]
Osteoporotic Precise Screening Using Chest Radiography and Artificial Neural Network: The OPSCAN Randomized Controlled Trial.

Radiology. 2024-6

[8]
The Canal Bone Ratio: A Novel Indicator for Opportunistic Osteoporosis Screening in Adult Spinal Deformity Patients Through Radiographs.

Spine (Phila Pa 1976). 2024-11-15

[9]
Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography.

J Bone Miner Res. 2023-6

[10]
Bone Health Optimization (BHO) in Spine Surgery.

Spine (Phila Pa 1976). 2023-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索