Suppr超能文献

利用语义增强的自监督图卷积和多头注意力融合进行草药推荐。

Utilizing semantically enhanced self-supervised graph convolution and multi-head attention fusion for herb recommendation.

作者信息

Tang Xianlun, Tang Yuze, Liu Xinran, Zhang Haochuan, Dang Xiaoyuan, Wang Ying, Xu Zihui

机构信息

Chongqing Key Laboratory of Complex Systems and Autonomous Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

School of Intelligent Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China.

出版信息

Artif Intell Med. 2025 Jun;164:103112. doi: 10.1016/j.artmed.2025.103112. Epub 2025 Mar 24.

Abstract

Traditional Chinese herbal medicine has long been recognized as an effective natural therapy. Recently, the development of recommendation systems for herbs has garnered widespread academic attention, as these systems significantly impact the application of traditional Chinese medicine. However, existing herb recommendation systems are limited by data sparsity, insufficient correlation between prescriptions, and inadequate representation of symptoms and herb characteristics. To address these issues, this paper introduces an approach to herb recommendation based on semantically enhanced self-supervised graph convolution and multi-head attention fusion (BSGAM). This method involves efficient embedding of entities following fine-tuning of BERT; leveraging the attributes of herbs to optimize feature representation through a residual graph convolution network and self-supervised learning; and ultimately employing a multi-head attention mechanism for feature integration and recommendation. Experiments conducted on a publicly available traditional Chinese medicine prescription dataset demonstrate that our method achieves improvements of 6.80%, 7.46%, and 6.60% in F1-Score@5, F1-Score@10, and F1-Score@20, respectively, compared to baseline methods. These results confirm the effectiveness of our approach in enhancing the accuracy of herb recommendations.

摘要

长期以来,中药一直被认为是一种有效的自然疗法。最近,草药推荐系统的发展引起了广泛的学术关注,因为这些系统对中药的应用有重大影响。然而,现有的草药推荐系统受到数据稀疏、方剂之间相关性不足以及症状和草药特征表示不充分的限制。为了解决这些问题,本文介绍了一种基于语义增强自监督图卷积和多头注意力融合(BSGAM)的草药推荐方法。该方法包括在BERT微调后对实体进行高效嵌入;利用草药的属性通过残差图卷积网络和自监督学习优化特征表示;最终采用多头注意力机制进行特征整合和推荐。在一个公开可用的中药方剂数据集上进行的实验表明,与基线方法相比,我们的方法在F1-Score@5、F1-Score@10和F1-Score@20上分别提高了6.80%、7.46%和6.60%。这些结果证实了我们的方法在提高草药推荐准确性方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验