Suppr超能文献

基于区域间时间泛化的语义预测方向动力学特征分析

Characterizing Directional Dynamics of Semantic Prediction Based on Inter-regional Temporal Generalization.

作者信息

Mamashli Fahimeh, Khan Sheraz, Hatamimajoumerd Elaheh, Jas Mainak, Uluç Işıl, Lankinen Kaisu, Obleser Jonas, Friederici Angela D, Maess Burkhard, Ahveninen Jyrki

机构信息

Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts 02129

Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts 02129.

出版信息

J Neurosci. 2025 May 7;45(19):e0230242025. doi: 10.1523/JNEUROSCI.0230-24.2025.

Abstract

The event-related potential/field component N400(m) is a widely accepted neural index for semantic prediction. Top-down input from inferior frontal areas to perceptual brain regions is hypothesized to play a key role in generating the N400, but testing this has been challenging due to limitations of causal connectivity estimation. We here provide new evidence for a predictive model of speech comprehension in which IFG activity feeds back to shape subsequent activity in STG/MTG. Magnetoencephalography (MEG) data was obtained from 21 participants (10 men, 11 women) during a classic N400 paradigm where the semantic predictability of a fixed target noun was manipulated in simple German sentences through the preceding verb. To estimate causality, we implemented a novel approach, based on machine learning and temporal generalization, to test the effect of inferior frontal gyrus (IFG) on temporal regions. A support vector machine (SVM) classifier was trained on IFG activity to classify less predicted (LP) and highly predicted (HP) nouns and tested on superior/middle temporal gyri (STG/MTG) activity, time-point by time-point. The reverse procedure was then performed to establish spatiotemporal evidence for or against causality. Significant decoding results were found in our bottom-up model, which were trained at hierarchically lower level areas (STG/MTG) and tested at the hierarchically higher IFG areas. Most interestingly, decoding accuracy also significantly exceeded chance level when the classifier was trained on IFG activity and tested on successive activity in STG/MTG. Our findings indicate dynamic top-down and bottom-up flow of information between IFG and temporal areas when generating semantic predictions.

摘要

事件相关电位/场成分N400(m)是一种被广泛接受的语义预测神经指标。据推测,从额下回区域到感觉脑区的自上而下的输入在产生N400中起关键作用,但由于因果连接估计的局限性,对此进行测试一直具有挑战性。我们在此为言语理解的预测模型提供了新证据,其中额下回活动反馈以塑造颞上回/颞中回(STG/MTG)的后续活动。在一个经典的N400范式中,从21名参与者(10名男性,11名女性)获取了脑磁图(MEG)数据,在该范式中,通过前面的动词在简单德语句子中操纵固定目标名词的语义可预测性。为了估计因果关系,我们实施了一种基于机器学习和时间泛化的新方法,以测试额下回(IFG)对颞叶区域的影响。支持向量机(SVM)分类器在IFG活动上进行训练,以对预测性较低(LP)和预测性较高(HP)的名词进行分类,并在颞上回/颞中回(STG/MTG)活动上逐时间点进行测试。然后进行反向操作,以建立支持或反对因果关系的时空证据。在我们的自下而上模型中发现了显著的解码结果,该模型在层次较低的区域(STG/MTG)进行训练,并在层次较高的IFG区域进行测试。最有趣的是,当分类器在IFG活动上进行训练并在STG/MTG的连续活动上进行测试时,解码准确率也显著超过了机遇水平。我们的研究结果表明,在产生语义预测时,IFG和颞叶区域之间存在动态的自上而下和自下而上的信息流。

相似文献

4
Causal cortical dynamics of a predictive enhancement of speech intelligibility.因果皮层动态预测增强言语可懂度。
Neuroimage. 2018 Feb 1;166:247-258. doi: 10.1016/j.neuroimage.2017.10.066. Epub 2017 Nov 2.
5
Decoding the Cortical Dynamics of Sound-Meaning Mapping.解码声音-意义映射的皮层动力学
J Neurosci. 2017 Feb 1;37(5):1312-1319. doi: 10.1523/JNEUROSCI.2858-16.2016. Epub 2016 Dec 27.

本文引用的文献

1
Causal evidence for a coordinated temporal interplay within the language network.语言网络中协调时间相互作用的因果证据。
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2306279120. doi: 10.1073/pnas.2306279120. Epub 2023 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验