Suppr超能文献

开发先进的数据驱动框架以预测岩石上桩的承载能力。

Developing advanced datadriven framework to predict the bearing capacity of piles on rock.

作者信息

Onyelowe Kennedy C, Hanandeh Shadi, Kamchoom Viroon, Ebid Ahmed M, Reyes Silva Fabián Danilo, Allauca Palta José Luis, Llamuca Llamuca José Luis, Avudaiappan Siva

机构信息

Department of Civil Engineering, College of Eng & Eng Technology, Michael Okpara University of Agriculture, Umudike, Nigeria.

Department of Civil Engineering, School of Engineering and Applied Sciences, Kampala International University, Kampala, Uganda.

出版信息

Sci Rep. 2025 Apr 1;15(1):11051. doi: 10.1038/s41598-025-96186-1.

Abstract

Developing accurate predictive models for pile bearing capacity on rock is crucial for optimizing foundation design and ensuring structural stability. This research presents an advanced data-driven framework that integrates multiple machine learning algorithms to predict the bearing capacity of piles based on geotechnical and in-situ test parameters. A comprehensive dataset comprising key influencing factors such as pile dimensions, geological characteristics, and penetration resistance was utilized to train and validate various models, including Kstar, M5Rules, ElasticNet, XNV, and Decision Trees. The Taylor diagram and statistical evaluations demonstrated the superiority of the proposed models in capturing complex nonlinear relationships, with high correlation coefficients and low root mean square errors indicating robust predictive capabilities. Sensitivity analyses using Hoffman and Gardener's approach and SHAP values identified the most influential parameters, revealing that penetration resistance, pile embedment depth, and geological conditions significantly impact pile capacity. The findings underscore the effectiveness of machine learning in geotechnical engineering applications, offering a reliable and efficient alternative to traditional empirical and analytical methods. The developed framework provides engineers and practitioners with a powerful tool for improving pile design accuracy, reducing uncertainties, and optimizing construction practices. Future research should focus on expanding the dataset with diverse geological conditions and exploring hybrid modeling techniques to enhance prediction accuracy further.

摘要

开发精确的岩石上桩基础承载力预测模型对于优化基础设计和确保结构稳定性至关重要。本研究提出了一种先进的数据驱动框架,该框架集成了多种机器学习算法,以基于岩土工程和现场测试参数预测桩的承载力。利用一个包含桩尺寸、地质特征和贯入阻力等关键影响因素的综合数据集来训练和验证各种模型,包括Kstar、M5Rules、ElasticNet、XNV和决策树。泰勒图和统计评估表明,所提出的模型在捕捉复杂非线性关系方面具有优越性,高相关系数和低均方根误差表明其具有强大的预测能力。使用霍夫曼和加德纳方法以及SHAP值进行的敏感性分析确定了最具影响力的参数,表明贯入阻力、桩入土深度和地质条件对桩的承载力有显著影响。研究结果强调了机器学习在岩土工程应用中的有效性,为传统经验和分析方法提供了一种可靠且高效的替代方案。所开发的框架为工程师和从业人员提供了一个强大的工具,可提高桩基础设计精度、减少不确定性并优化施工实践。未来的研究应侧重于扩大具有不同地质条件的数据集,并探索混合建模技术以进一步提高预测精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验